
PromptSet: A Programmer’s Prompting Dataset
Kaiser Pister∗

kaiser@cs.wisc.edu
University of Wisconsin-Madison

Madison, USA

Dhruba Jyoti Paul
University of Wisconsin-Madison

Madison, USA

Patrick Brophy
University of Wisconsin-Madison

Madison, USA

Ishan Joshi
University of Wisconsin-Madison

Madison, USA

ABSTRACT
The rise of capabilities expressed by large language models has
been quickly followed by the integration of the same complex sys-
tems into application level logic. Algorithms, programs, systems,
and companies are built around structured prompting to black box
models where the majority of the design and implementation lies
in capturing and quantifying the ‘agent mode’. The standard way
to shape a closed language model is to prime it for a specific task
with a tailored prompt, often initially handwritten by a human. The
textual prompts co-evolve with the codebase, taking shape over the
course of project life as artifacts which must be reviewed and main-
tained, just as the traditional code files might be. Unlike traditional
code, we find that prompts do not receive effective static testing and
linting to prevent runtime issues. In this work, we present a novel
dataset called PromptSet, with more than 61,000 unique developer
prompts used in open source Python programs. We perform anal-
ysis on this dataset and introduce the notion of a static linter for
prompts. Released with this publication is a HuggingFace dataset
and a Github repository to recreate collection and processing efforts,
both under the name pisterlabs/promptset.

CCS CONCEPTS
• Computing methodologies → Natural language generation.

KEYWORDS
PromptManagement, Large LanguageModels, Dataset, Information
systems, Ethnography, Taxonomy

ACM Reference Format:
Kaiser Pister, Dhruba Jyoti Paul, Patrick Brophy, and Ishan Joshi. 2024.
PromptSet: A Programmer’s Prompting Dataset. In 2024 International Work-
shop on Large Language Models for Code (LLM4Code ’24), April 20, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3643795.3648395

∗Also with Pister Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LLM4Code ’24, April 20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0579-3/24/04
https://doi.org/10.1145/3643795.3648395

1 INTRODUCTION
As large language models (LLMs) become more effective, more soft-
ware is written to control and capture their potential. For any given
task, a developer will have three common options to improve LLM
performance: improve the foundational model, finetune a founda-
tional model towards a specific task, or use a task tailored prompt.
Major improvements across many benchmarks can be achieved by
retraining the base model from scratch, however outside of large
research labs, this is an intractable task [14, 21, 28]. Finetuning can
function as a cheaper alternative to retraining from scratch, but
can require a modest sized dataset to achieve meaningful results.
Additionally, it leads to catastrophic forgetting and complex model
management when working with multiple tasks [11, 27]. Prompt-
ing can serve as a cheap, efficient way to control an LLM without
significant investment in infrastructure or data [4, 36]. Since the
introduction of few-shot learning, prompting has become a neces-
sary feature of working with LLMs, and despite the proliferation of
research into prompt engineering, in-context-learning and similar
fields, there has been relatively little exploration of prompt manage-
ment [24, 38]. What’s more, there exists no standard methodology
for working with prompts, leading to incoherent collections of
files, folders, JSON objects, and code strings inhibiting readability,
reusability, and maintainability [15].

With LLMs moving from research into production, it is ever
more important to treat the prompts which control business logic
as first class citizens in the CI/CD pipelines of traditional software
engineering. There are many works focusing on assessing and op-
timizing the effectiveness of a prompt, once it is in your system
(either automatically or manually), but these rely on runtime com-
putation against an LLM backbone and do not provide any static
guarantees [18, 19, 35, 37].

In this work, we propose static analysis passes to add to an exist-
ing CI/CD pipeline to preemptively detect non-traditional errors in
prompts, such as misuse of variable formatting, typo detection, and
input sanitization. In order to motivate these passes, we introduce a
suite of extraction techniques to parse prompts from code files and
a novel dataset, PromptSet, of more than 61,000 unique developer
prompts used in open source Python programs. Finally, we are
the first to our knowledge to discuss unit testing in the context of
prompts as code.

2 BACKGROUND
We abstract the language model to its functional purpose of decod-
ing tokens based on an input sequence of tokens [10]. The internal

https://orcid.org/0009-0004-3144-8235
https://orcid.org/0009-0002-0817-6898
https://orcid.org/0009-0004-0049-6736
https://orcid.org/0009-0009-1298-2279
https://doi.org/10.1145/3643795.3648395
https://doi.org/10.1145/3643795.3648395
https://doi.org/10.1145/3643795.3648395


LLM4Code ’24, April 20, 2024, Lisbon, Portugal Pister, et al.

mechanisms are independent of the work presented here. For an in-
depth understanding of the aforementioned architecture, we direct
readers toward the existing literature on this subject. [5, 22, 31].

Following the discovery of zero-shot and few-shot abilities of
LLMs, a cottage industry of observation tools has developed in the
market, allowing programmers to adequately monitor and experi-
ment with open access language models [1, 29]. These tools give
users the ability to detect anomalies in their agent systems, afford-
ing reliability in a design space that is notoriously unreliable. In
parallel, quality is afforded by a large array of tools for optimizing
the performance of individual prompts. Online courses for prompt
engineering as a discipline have cropped up adjacent to Github
repositories of "awesome-prompts" to improve a developer’s man-
ual prompting ability [6, 33]. Although the topic is often criticised
as a pseudo-science, common tricks and minor variations have
demonstrably large effects on the quality of results [2]. Automatic
optimization tools leverage an LLM as a self-optimizer across an
established dataset to improve prompt quality [35].

In traditional software engineering reliability and quality are
checked regularly through the use of continuous integration and
delivery (CI/CD) systems. CI/CD pipelines can manage many as-
pects of a code base, such as formatting, linting, and unit testing.
Regardless of the implementation, these systems are responsible
for reducing the number of issues deployed to production systems.
Formatting keeps code consistent, simplifying reviews between
team members. Linting uses static analysis to keep a code base
clean from common problems. Unit testing guarantees run-time
assumptions at a granular level. As development teams scale to non-
trivial sizes, CI/CD becomes one of the key factors in maintaining
feature velocity [13].

Primarily due to the infancy of the field of prompting, we find the
CI/CD ecosystem for prompting wanting. Formatting for prompts
resides at the level of the developer’s editor and is agnostic to the
purpose of the prompt. Often a prompt exists alongside the rest
of the code as a simple string. There does not exist any form of
linting for prompts, even bugs as simple as a mismatched variable
interpolation won’t be detected until run-time.

Functionality (integration) testing of prompts is quite popular,
and there are many tools that support this behavior [25]. We distin-
guish between the effectiveness of a prompt (its evaluation results
on a dataset) and the characteristics of the prompt. For example, a
unit test of a prompt might be an assertion that the prompt does
not attempt to interpolate a string into an integer formatted slot
(e.g. "Num: {:02d}".format("x")). A bug of this class could be
detected by a static analysis pass, similar to any traditional type
error.

2.1 Taxonomies of Prompts
Other works have looked to build a prescriptive taxonomy of ef-
fective prompting techniques [9, 33]. We leverage these works to
categorize and classify our prompt dataset, but find that a large
majority of our prompts do not fit neatly into one or more of these
categories. We take an unsupervised, descriptive approach with
our classifications, and leave further category refinement to future
work.

2.2 Other Prompting Datasets
At Mining Software Repositories ’24, there was a code mining
challenge addressing a similar task of understanding the purpose
of prompts sent to DevGPT, a chat bot built for talking to code
repositories on Github [34]. In contrast to the prompts we find in
our dataset, DevGPT presents conversational text, similar to a user
talking on ChatGPT. PromptSet represents programmatic prompts
that often dictate application level logic. These prompts are not
designed for chatting with a user, except occasionally by way of a
programmed bot.

3 METHODOLOGY
Towards the goal of developing meaningful static analysis passes,
we first perform an ethnographic survey of how developers build
applications with open LLM SDKs. The code survey is intended to
validate our hypotheses and motivate the development of targeted
linting rules or unit tests. We make PromptSet openly available to
facilitate future static analysis from the community.

Our prompt dataset originates from open source code hosted on
Github. We scrape Python code files which fulfill a simple criteria
of using a language model library; see appendix A for the spe-
cific query string. We search for usage of the openai, anthropic,
cohere, and langchain libraries, as these are regularly cited as the
most popular tools in online resources. We ignore forked reposito-
ries to reduce duplication. Notably, we exclude the transformers
library which would include text prompts, but we find it to have
too many false positives due to its other use cases. Figure 1 shows
an example code file which has been flagged for processing.

3.1 Extracting Prompts
We utilize Tree-sitter for building abstract syntax tree (AST) repre-
sentations of each scraped file and then query against the tree with
specific patterns based on API design specifications and commonly
observed behavior [30].

We expect our dataset to be a subset of the entire set of prompts
in these files as discussed in section 5.1.

(1) OpenAI & Anthropic API calls:
Both OpenAI (beta, v1) and Anthropic have similar API de-
sign specifications. The SDKs expose .create functions on
the .completions endpoint. OpenAI additionally exposes
a .chat variant, which is captured with the same pattern.
From the method calls, we extract specific argument values
for positionally passed arguments, as well as the keyword
arguments prompt and messages. Common additional argu-
ments are tracked and displayed in Table 3.

(2) Cohere API calls:
The Cohere SDK exposes multiple methods for handling text
input. The twomain entry points are .chat and .summarize.
We patternmatch on these calls, and follow the samemethod-
ology as above for extracting the arguments.

(3) LangChain PromptTemplate and Message classes:
LangChain introduces multiple ways to create prompts, in
particular a PromptTemplate class and a Message
(HumanMessage, AIMessage) class, which support comple-
tion and chat endpoints respectively. These are base classes
that developers can extend with their own functionality. We



PromptSet: A Programmer’s Prompting Dataset LLM4Code ’24, April 20, 2024, Lisbon, Portugal

Figure 1: Example code file

search for constructor calls of classes which contain *Prompt
or *Message in their name, and extract the arguments passed
to the initialize function.

(4) LangChain Tools:
LangChain exposes a Python decorator for automatically
converting a function into an LLM tool using the function’s
docstring and type hints as the tool’s description. Similarly,
they allow for extending a BaseTool class. We match on
@tool decorators and BaseTool super classes to detect these
use cases.

(5) PromptTemplate.from_file
LangChain allows users to save prompts to standard text files,
and load them at run time for processing. The from_file
function accomplishes this task, and we match directly on
any use of *Template.from_file.

(6) Prompt and Template variables
From our observations, we see that the vast majority of vari-
ables used as prompts are named with the key phrase prompt
or template. We flag any variable declarations matching this

pattern, but note that this could be a noisy heuristic. In prac-
tice it proves to match the quality of the other extraction
techniques. 1

(7) "content" in dictionaries
The basic structure for many chat messaging templates is
using a Python dictionary with the keys role and content.
The role entry typically contains "user", "system" or "assis-
tant". The content entry contains the message that will be
sent to LLM. We directly search for dictionaries with the
specific key matching "content" to extract these prompts.

(8) DevGPT Conversation Prompts
Finally, we add the prompts from the recent DevGPT MSR
challenge to compare and contrast against PromptSet. These
prompts are different in nature, and we keep them separate
through our evaluation.

3.2 Post-Processing
After extracting the key regions of the AST from each file, we use
the black formatter to consistently format the inputs for better

1We found the message name was overloaded too often to be of much use.



LLM4Code ’24, April 20, 2024, Lisbon, Portugal Pister, et al.

readability and deduplication [8]. Finally, we use tree-sitter again
to extract strings, identifiers, and interpolations per prompt.

3.3 Increasing Yield
After performing a first iteration through these heuristics, we re-
viewed the extracted prompts as well as the files which failed to find
any prompts and refined the extraction process. In particular, we
added a naive 𝛽-substitution preprocessing step to replace constant
expressions with their respective values throughout the file. As
we process a file in search of prompt patterns, we track constant
variable declarations by looking for static single assignment to vari-
able names in the same file. Furthermore, we construct a simple
string-evaluation language for processing string operations such as
concatenation and interpolation across the static variable set. See
listing 1 for an example.

We note that this string interpreter is sound but not complete,
and cannot process all Python string manipulations. Further explo-
ration of partial execution models could be leveraged to increase
the yield of prompts, but we leave this to future work.

1 import cohere # file is flagged for processing

2

3 co = cohere.Client ()

4 pre = "You are an agent working at the check -in desk."

5 query = pre + " User said: {history}"

6 co.generate(query) # flag `query `
7

8 # compute: query [pre:= "You are...", history: <free >]

9 # query := "You are an ... User said: PLACEHOLDER"

Listing 1: naive 𝛽-substitution

3.4 Discarded Heuristics
We consider a multi-line string heuristic but upon review found too
many false positives given the correlation between the streamlit
library, docstrings, and LLM development. We consider a sequence
classifier to detect prompts but discard it for similar reasons.

4 RESULTS
We describe PromptSet in two parts. First we provide a surface
overview of the dataset, then we provide specific findings from
our analysis. The prompt scraping and extraction was last run on
January 10, 2024. By manually searching Github with our queries,
we approximate that there are 153,000 code files which match our
search criteria. Due to rate limiting, we are able to download 93,142
of these files, so we conclude that our dataset represents 60.7% of
the open-source API-based LLM-usage. The 93,142 code files come
from 37,944 repositories.

4.1 Dataset Overview
Using the methodology described in section 3.1, we extract 118,862
total prompts from the scraped files, as seen in table 1. The extracted
prompts come from 37,112 of the code files (20,598 repositories).
The remaining 56,030 files do not contain any prompts matching
our extraction criteria, in part due to over scraping from Github and
in part due to strict pattern matching. We perform a manual review
of 200 code files which report no prompts found and manually
tag 36 as false negatives, i.e. these files did contain prompts, but
our extraction methodology did not find them. The majority of

Table 1: Prompt Count per Source

Library Source Count
OpenAI/Anth. completions.create 12,420

Cohere .chat 260
LangChain @tool 1,425
LangChain Template/Message class 24,302
LangChain from_file 21

All Prompt/Template name 94,897
All Content Key in dictionary 34,324

DevGPT Conversations 13,748

Table 2: Unique Prompts

Set Total Found Unique Length > 10 Repositories
PromptSet 118,862 61,448 57,981 20,598
DevGPT 13,748 13,236 13,053 -

Table 3: LLM Call Arguments

Parameter Most Common2 2nd 3rd
model gpt-3.5-turbo davinci-003 gpt-4

temperature 0 0.7 0.5
top_p 1 0.95 0.5

max_tokens 100 1024 1000

the true negatives are files that only use the semantic embedding
functionality of these libraries or provide light wrappers around
the library APIs. A quick check against the search terms on Github
reveals that the ratio of extracted prompts matches roughly with the
distribution between LangChain (most popular), OpenAI (popular),
and Cohere (uncommon). Tool usage was introduced relatively
recently, so the small count of tools is expected.

In order to perform per-prompt analysis, we join the prompts
into a single set for testing. The results of deduplication are shown
in table 2. We display length and language distributions of the
dataset in figures 2 and 3. Language is detected on prompts of
length greater than ten characters using the ftlangdetect package
[16, 17]. The majority of prompts are written in English, accounting
for 84.1% of the strings we extracted. The remaining 15.9% fall
between Mandarin, Japanese, Spanish, French, German, and Korean
(below 1% are not mentioned).

Briefly, we investigate the distributions of interpolations, and
confirm that the most common variables are chat, query, input
and similar placeholder input values for conversational AI. There
was minimal representation of type-formatting statements in the
dataset, (e.g. "ratio:.2f"), all of which were floating point for-
matting.

Finally, we perform a Zipf’s law analysis on the input tokens
using the cl100k_base tokenizer, as that supports the most com-
mon models used. From figure 4, we see that the mass is distributed

2Data reported from original November dataset



PromptSet: A Programmer’s Prompting Dataset LLM4Code ’24, April 20, 2024, Lisbon, Portugal

Figure 2: Distribution of prompt lengths in PromptSet.

Figure 3: Distribution of languages in PromptSet.

above the ideal line, meaning there is a more even distribution
across the token set than in traditional writing.

4.2 Categorization and Clustering
Using the dataset, we begin investigation in multiple directions to
better understand the potential use cases of these prompts. To start,
we follow the work ofWhite et al. and categorize the prompts, using
the six categories laid out in their work [33]. We craft a prompt
based on their explanation of the categories and send 2,200 input
prompts to the gpt-4-preview-1106 model for prediction across
PromptSet and DevGPT (2,000 for PromptSet, 200 for DevGPT). The

Figure 4: Zipf’s law plotted on tokens from PromptSet.

results are shown in figure 5 and an enumeration of the categories
with extracted examples is provided in table 4.3

These results show that there is some alignment between the pre-
scribed "good prompting techniques" and the prompting techniques
we find in the wild, however there are still large discrepancies. Many
users are enacting the category-2, "Output Customization-Persona",
beginning their prompts with "Act as a...", to elicit a specific type
of response. The distribution of DevGPT prompts is more evenly
spread than the distributions of PromptSet which favors categories
1 and 2 (Input and Output). We believe this to be the case because
developers require strict control of the input and output to their
systems. Only once those are under control can they leverage cate-
gories 3-6. On the other hand, in a conversation there are no such
restrictions.

Many of the prompts fail to fall into any of the categories, and
we suspect this is due to a few contributing factors. First, some
of the prompts are partial prompts which might no have a clear
category without more context. Second, since the prompts were
labeled with an LLM with a meta-prompt that did not undergo any
optimization, there is the possibility for error. Third, the taxonomy
proposed by White et al. is now ten months old, and the study of
prompting has progressed much since its release. It is possible that
a new category could emerge, though we do not see a clear trend
in the dataset at this point.

In order to perform our own classification, we create a clustering
nearest neighbor plot with the semantic meaning of each prompt. To
start, we embed each prompt using the all-MiniLM-L6-v2 model
from the sentence-transformers library [23]. We fit a t-SNE with
10 clusters to the embedding outputs and show the results in figure
6. Manual inspection of the clusters shows many similarities, and
we assign labeled names based on the most common patterns we
see.

4.3 Technique Propagation
Next we investigate the propagation of research techniques into
PromptSet in table 5.We use a few heuristics to derive usage of some
of the most popular techniques, such as chain-of-thought, few shot

3Interestingly, only two of the prompts in the 2,000 PromptSet sampled prompts caused
breaks in our prompt.



LLM4Code ’24, April 20, 2024, Lisbon, Portugal Pister, et al.

Table 4: Prompt Patterns Per White et al.

Pattern Name Source Example4

Input Semantics jxnl You are an expert at outputting json.
You always output valid JSON based on the pydantic schema given to you.

Output Customization benczech212 You are a wizard shop owner named {ASSISTANT_NAME}.
Only talk on the behalf of {ASSISTANT_NAME}. My name is {USER_NAME}

Error Identification
Prompt Improvement Kaastor Given the following conversation and a follow up question, rephrase the follow up question

to be a standalone question.
Interaction offtian You are playing the ’20 Questions’ game with another player. Your role is to answer ’Yes’ or

’No’ to questions based on a given concept or object.
Context Control nachollorca Your task is to answer a question given some context given here, delimited by triple backticks:

Figure 5: Categorization of PromptSet.

Figure 6: t-SNE of PromptSet.

prompting, and special tokens [3, 32]. For each of these techniques,
we assign a few representative strings to filter on through each
of the splits. Chain-of-thought, for example, matches with "step-
by-step", "step by step", "let(’)s think", and "thought(s):". We expect

this to be an underestimate on usage. The doc column represents
prompts mentioning "documents" which have a high prevalence in
recent product developments.

4.4 Error Investigation
To perform an error investigation, we first look for typos in the
prompts. Prompts tend to be natural language requests, typed by
hand and as we have observed, can be riddled with typos. We
use the cspell package on each prompt and find close to 28,000
spelling errors across the unique English prompts of PromptSet
[7]. Many of the spelling errors stem from proper nouns and code
related terminology, so we remove capitalized mistakes and words
with underscores, reducing the error count to 16,989. To further
improve the accuracy two authors independently manually tag 200
of these errors, and find a true positive rate between 33%-40%. If we
extrapolate with this rate, there would be a typo in approximately
1 of 8 prompts.

These mistakes are not limited to junior developers. In writ-
ing this work, we found typos in our own prompts as well as the
academic papers that we have reviewed [26].

Finally, we develop a simple white space detection lint pass,
which checks for trailing and leading white space in prompts. The
official documentation from OpenAI discusses that trailing white
spaces in prompts can lead to poor tokenization which causes a
degradation in performance of the model. While a simple .strip()
can resolve the issue, there is no guarantee that this stripping
happens on the server side. Thus white space detection is a perfect
problem for a linter to solve. The results in table 6 show that a
large portion of the prompts we find do indeed have trailing white
spaces, such as newlines, tabs and spaces.

5 DISCUSSION
In this work we introduce a novel dataset with the purpose of better
understanding how developers are interacting with the newfound
power of integrating LLMs into their applications. PromptSet indeed
displays a diversity of ideas and we acknowledge that even this
only represents a fraction of the programming prompt usage that
exists.

4Prompts are abbreviated for space



PromptSet: A Programmer’s Prompting Dataset LLM4Code ’24, April 20, 2024, Lisbon, Portugal

Table 5: Research Technique Detection

Set Total concise Few Shot doc CoT Code Block Instruction Block Scratchpad Tool use Special Tokens
PromptSet 57953 176 (0.3) 1008 (1.7) 1939 (3.3) 1095 (1.9) 1696 (2.9) 927 (1.6) 170 (0.3) 168 (0.3) 178 (0.3)
DevSet 13053 2 (0.0) 88 (0.7) 1015 (7.8) 105 (0.8) 730 (5.6) 120 (0.9) 0 (0.0) 319 (2.4) 16 (0.1)

Table 6: Leading & Trailing Whitespace Detection

Set Total Trailing (%) Leading (%) All (%)
PromptSet 58,814 17,668 (30.0) 9,723 (16.5) 19,681 (33.5)
DevGPT 13,399 2,081 (15.5) 235 (1.8) 2,256 (16.8)

5.1 Limitations
As mentioned in the results, we expect to have approximately 60%
public coverage of the libraries we mention, however there are
other libraries we did not consider scraping and many closed source
repositories that are obviously out of reach. Additionally, we restrict
our set to Python, but there is an active JavaScript development
community focused on LLM development as well. Beyond hitting
API limits to fully searchGithub, the extraction techniques proposed
do not find the full set of prompt strings used in the files mentioned,
nor do they extract prompts from adjacent files in the same system
(for example prompts that were imported from another file). This
means that while PromptSet contains a large number of diverse
prompts, it might not reflect the true distribution and characteristics
of prompts. Consequently, our dataset is not exhaustive and may
not include all relevant data points, a factor that must be considered
when interpreting the findings, as it could lead to gaps that affect
the overall results.

5.2 Future Work
Despite the potential benefit to readability, we cannot quantify
that typos or prompt mistakes are bad for every possible task [20].
Instead we posit that in the majority of the cases, a developer would
like to actively make a choice in handling the likely mistakes of
typos.

A good unit test for a prompt might test that the prompt follows
the project guidelines on appropriate wording, or asserts that the
prompt does not allow for injection into a non-data section of
the prompt [12]. Perhaps asserting that all prompts include the
proper persona within a repository would be a helpful test for some
developers. With unit testing, the power lies in the flexibility to
tailor the test to each individual task and prompt.

The goal for PromptSet is to put forward a tool to parse prompts
from files so that downstream applications can easily perform
proper prompt management. We hope to establish a conversation
about appropriate prompt hygiene so that the open source commu-
nity can develop strong tooling for improving the CI/CD pipeline
for prompts. In this work we propose a few surface level lint passes,
such as typo detection, white space trimming and type annotation
matching, however the possibilities go far beyond these simple
tests.

REFERENCES
[1] LangChain AI. 2023. LangServe. https://github.com/langchain-ai/langserve
[2] Anthropic. 2023. Claude 2.1 Prompting. https://www.anthropic.com/index/

claude-2-1-prompting
[3] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi,

Joanna Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski,
Piotr Nyczyk, and Torsten Hoefler. 2023. Graph of Thoughts: Solving Elaborate
Problems with Large Language Models. arXiv:2308.09687 [cs.CL]

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter,
Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 1877–1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[6] Miguel Corralm. 2023. Awesome Prompting. https://github.com/corralm/
awesome-prompting

[7] CSpell. 2023. CSpell. https://www.npmjs.com/package/cspell
[8] Python Software Foundation. 2023. Black. https://github.com/psf/black
[9] Thorsten Händler. 2023. Balancing Autonomy and Alignment: A Multi-

Dimensional Taxonomy for Autonomous LLM-powered Multi-Agent Architec-
tures. ArXiv abs/2310.03659 (2023). https://api.semanticscholar.org/CorpusID:
263671545

[10] Ari Holtzman, Peter West, and Luke Zettlemoyer. 2023. Generative Models as
a Complex Systems Science: How can we make sense of large language model
behavior? preprint (2023).

[11] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In International Conference on Learning Representations. https:
//openreview.net/forum?id=nZeVKeeFYf9

[12] Yangsibo Huang, Samyak Gupta, Mengzhou Xia, Kai Li, and Danqi Chen. 2023.
Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation. arXiv
preprint arXiv:2310.06987 (2023).

[13] Instagram. 2016. Continuous Deployment at Instagram. https://instagram-
engineering.com/continuous-deployment-at-instagram-1e18548f01d1

[14] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,
Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. arXiv:2310.06825 [cs.CL]

[15] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How Can
We Know What Language Models Know? arXiv:1911.12543 [cs.CL]

[16] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,
and Tomas Mikolov. 2016. FastText.zip: Compressing text classification models.
arXiv preprint arXiv:1612.03651 (2016).

[17] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag
of Tricks for Efficient Text Classification. arXiv preprint arXiv:1607.01759 (2016).

[18] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.
2022. Fantastically Ordered Prompts and Where to Find Them: Overcoming
Few-Shot Prompt Order Sensitivity. arXiv:2104.08786 [cs.CL]

[19] Rajasekhar Reddy Mekala, Yasaman Razeghi, and Sameer Singh. 2023.
EchoPrompt: Instructing the Model to Rephrase Queries for Improved In-context
Learning. arXiv:2309.10687 [cs.CL]

[20] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh
Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the Role of Demonstrations:

https://github.com/langchain-ai/langserve
https://www.anthropic.com/index/claude-2-1-prompting
https://www.anthropic.com/index/claude-2-1-prompting
https://arxiv.org/abs/2308.09687
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2005.14165
https://github.com/corralm/awesome-prompting
https://github.com/corralm/awesome-prompting
https://www.npmjs.com/package/cspell
https://github.com/psf/black
https://api.semanticscholar.org/CorpusID:263671545
https://api.semanticscholar.org/CorpusID:263671545
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://instagram-engineering.com/continuous-deployment-at-instagram-1e18548f01d1
https://instagram-engineering.com/continuous-deployment-at-instagram-1e18548f01d1
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/1911.12543
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2309.10687


LLM4Code ’24, April 20, 2024, Lisbon, Portugal Pister, et al.

What Makes In-Context Learning Work? arXiv:2202.12837 [cs.CL]
[21] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[22] Mary Phuong and Marcus Hutter. 2022. Formal Algorithms for Transformers.

arXiv:2207.09238 [cs.LG]
[23] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. CoRR abs/1908.10084 (2019). arXiv:1908.10084
http://arxiv.org/abs/1908.10084

[24] Laria Reynolds and Kyle McDonell. 2021. Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm. arXiv:2102.07350 [cs.CL]

[25] SquidgyAI. 2023. Squidgy Testy. https://github.com/squidgyai/squidgy-testy
[26] Robin Staab, Mark Vero, Mislav Balunović, and Martin Vechev. 2023. Beyond

Memorization: Violating Privacy Via Inference with Large Language Models.
arXiv:2310.07298 [cs.AI]

[27] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_
alpaca.

[28] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]

[29] Traceloop. 2023. OpenTelemetry. https://www.traceloop.com/blog/diy-
observability-for-llm-with-opentelemetry

[30] tree sitter. [n. d.]. Tree-sitter. https://tree-sitter.github.io/tree-sitter
[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),

Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[32] JasonWei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting Elicits
Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]

[33] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry
Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023.
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT.
arXiv:2302.11382 [cs.SE]

[34] Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. 2024. De-
vGPT: Studying Developer-ChatGPT Conversations. In Proceedings of the Inter-
national Conference on Mining Software Repositories (MSR 2024).

[35] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny
Zhou, and Xinyun Chen. 2023. Large Language Models as Optimizers.
arXiv:2309.03409 [cs.LG]

[36] Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang, Hyeongu Yun, Yireun Kim, and
Minjoon Seo. 2023. In-Context Instruction Learning. arXiv:arXiv:2302.14691

[37] Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021.
Calibrate Before Use: Improving Few-Shot Performance of Language Models.
arXiv:2102.09690 [cs.CL]

[38] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. 2022. Large Language Models Are Human-Level
Prompt Engineers. (2022). arXiv:2211.01910 [cs.LG]

A GITHUB SCRAPING CODE
1 for lib in ["openai",

2 "anthropic",

3 "cohere",

4 "langchain"]:

5 goto(f"https :// github.com/search?" +

6 "q=%22 from+{lib }%22+OR+" +

7 "%22 import +{lib }%22+" +

8 "language %3 Apython&type=code")

Received 25 January 2024

https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2207.09238
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2102.07350
https://github.com/squidgyai/squidgy-testy
https://arxiv.org/abs/2310.07298
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/2307.09288
https://www.traceloop.com/blog/diy-observability-for-llm-with-opentelemetry
https://www.traceloop.com/blog/diy-observability-for-llm-with-opentelemetry
https://tree-sitter.github.io/tree-sitter
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2302.11382
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/arXiv:2302.14691
https://arxiv.org/abs/2102.09690
https://arxiv.org/abs/2211.01910

	Abstract
	1 Introduction
	2 Background
	2.1 Taxonomies of Prompts
	2.2 Other Prompting Datasets

	3 Methodology
	3.1 Extracting Prompts
	3.2 Post-Processing
	3.3 Increasing Yield
	3.4 Discarded Heuristics

	4 Results
	4.1 Dataset Overview
	4.2 Categorization and Clustering
	4.3 Technique Propagation
	4.4 Error Investigation

	5 Discussion
	5.1 Limitations
	5.2 Future Work

	References
	A Github Scraping Code

