
Investigating the Proficiency of Large Language Models in
Formative Feedback Generation for Student Programmers

Smitha S Kumar∗
Heriot-Watt University

Dubai, United Arab Emirates
sd102@hw.ac.uk

Michael Adam Lones
Heriot-Watt University

Edinburgh, United Kingdom
m.lones@hw.ac.uk

Manuel Maarek
Heriot-Watt University

Edinburgh, United Kingdom
m.maarek@hw.ac.uk

Hind Zantout
Heriot-Watt University

Dubai, United Arab Emirates
h.zantout@hw.ac.uk

ABSTRACT
Generative AI has considerably altered traditional workplace prac-
tice across numerous industries. Ever since the emergence of large
language models (LLMs), their potential to generate formative feed-
back for introductory programming courses has been extensively
researched. However, most of these studies have focused on Python.
In this work, we examine the bug-fixing and feedback-generation
abilities of Code Llama and ChatGPT for Java programming as-
signments using our new Java benchmark called CodeWBugs. The
results indicate that ChatGPT performs reasonably well, and was
able to fix 94.33% programs. By comparison, we observed high vari-
ability in the results from Code Llama. We further analyzed the
impact of different types of prompts and observed that prompts
that included task descriptions and test inputs yielded better re-
sults. In most cases, the LLMs precisely localized the bugs and also
offered guidance on how to proceed. Nevertheless, we also noticed
incorrect responses generated by the LLMs, emphasizing the need
to validate responses before disseminating feedback to learners.

CCS CONCEPTS
• Applied computing → Computer-assisted instruction; •
Computing methodologies→Machine translation; Natural
language generation.

KEYWORDS
Large language models (LLM), GPT-4, Feedback, Java Programming,
Program Repair

ACM Reference Format:
Smitha S Kumar, Michael Adam Lones, Manuel Maarek, and Hind Zantout.
2024. Investigating the Proficiency of Large Language Models in Forma-
tive Feedback Generation for Student Programmers. In 2024 International
Workshop on Large Language Models for Code (LLM4Code ’24), April 20, 2024,
Lisbon, Portugal. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3643795.3648380

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LLM4Code ’24, April 20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0579-3/24/04.
https://doi.org/10.1145/3643795.3648380

1 INTRODUCTION
Large Language models (LLMs) have considerably impacted sec-
tors ranging from healthcare to finance, marketing, software engi-
neering, and education [25]. LLM-based code generators such as
OpenAICodex [27], GitHub CoPilot [17] and Code Llama [32] have
already garnered significant global attention. The implications of
such tools in programming education have created considerable ap-
prehension among academics and researchers in computer science
(CS) education [35]. As a result, there has been a notable increase
in the number of research papers examining the opportunities and
challenges of LLMs in programming education [16, 30].

The recent technological developments in Generative AI sug-
gest that programming will be an essential skill for any computer
science graduate. However, programming continues to be a grand
challenge for many students in their introductory programming
course (commonly called CS1) at university [3]. One reason for
this is the absence of immediate personalized feedback in large
CS1 classes, which tends to demotivate learners [4]. Even when
available, Scheeler [34] suggests that formative feedback is only
effective when it is specific, corrective, positive, and immediate.
To address this deficit, a variety of methods, including data-driven
techniques [31], automatic program repair methodologies [19] and
machine learning-based systems [41] have been used to generate
formative feedback.

According to Narciss [24], “feedback refers to all post-response
information which informs the learner on his/her actual state of
learning or performance in order to regulate the further process
of learning” and the various types of feedback include knowledge
of performance (KP), knowledge of result or response (KR), and
knowledge of the correct response (KCR). Elaborated feedback types
such as knowledge about task constraints (KTC), knowledge about
concepts (KC), knowledge about mistakes (KM), knowledge about
how to proceed (KH), and knowledge about meta-cognition (KMC)
offer greater guidance to learners. In light of the notable develop-
ments in LLMs, researchers are examining viable approaches to
integrating these models into programming language instruction
[29, 36, 39, 40, 42] to improve programming pedagogy.

Many of the previous research studies indicate that LLMs can
generate programming assignments, provide high-quality explana-
tions for code, and even perform defect detection [38]. However,
a vast majority of the recent studies have been conducted using

LLM4Code ’24, April 20, 2024, Lisbon, Portugal Smitha S Kumar, Michael Adam Lones, Manuel Maarek, and Hind Zantout

datasets that contain only Python programming assignments. Java1
is another commonly used programming language in undergradu-
ate studies, and it has different characteristics to Python, including
an emphasis on object-oriented programming. To the best of our
knowledge, there has not been an evaluation of the bug-fixing
and feedback-generation ability of LLMs when applied to Java
code. Moreover, there are a limited number of benchmarks such as
[5, 11, 23, 28] that are publicly available for Java.

In this work, we primarily investigate the bug-fixing and feedback-
generation ability of the popular LLMs Code Llama2 and ChatGPT3
using a new benchmark, CodeWBugs4.

The following research questions guide this study:
• RQ1. How effective are the LLM systems in generating solu-
tions for CS1 Java programming assignments?

• RQ2. How precisely do the LLMs localize the bug, and what
is the nature of the feedback generated?

• RQ3. To what extent does the addition of task descriptions
and examples to the prompt improve the LLM’s performance?

2 BACKGROUND
Programming is perceived as a complex task that presents signifi-
cant challenges to CS1 learners [14], with [18] noting that novice
programmers find procedural concepts, object-oriented program-
ming concepts, algorithm design concepts, and program design
concepts challenging. Research studies [9] have also highlighted
that students spend a considerable amount of time resolving errors
in Java code and this highlights the need for specific instructor
support. These studies highlight the need for clear and concise
feedback.

As LLMs have gained popularity in academia, CS education re-
searchers are increasingly investigating the possibility of using
LLMs to enhance the student learning experience [1]. The history
of Generative AI extends back to the 1950s. However, it was with
the introduction of deep learning that generative models gained a
notable performance improvement [6]. These models are trained
on millions of parameters, and are typically based on the Trans-
former [37] architecture. Although LLMs were originally designed
for natural language processing, they are increasingly being used in
various domains such as social science, natural science, engineering,
medical applications, and education [8].

With the advent of new LLMs such as GitHub Copilot [17], Star-
Coder [13] and ChatGPT [26], there is a growing interest in utilizing
these tools for code generation and program repair [15]. ChatGPT
[26], from OpenAI, is one of the most popular conversational AI
systems. Code Llama [32] is a family of open code-specialized large
language models based on Llama2 such as Code Llama, Code Llama-
Python, and Code Llama-Instruct and available in three sizes (7B,
13B, 34B). These models were evaluated on different programming
languages using the MultiPL-E benchmark [7].

Numerous studies have been conducted to evaluate how profes-
sional programmers [2] and novice programmers [20] utilize AI
code generators. It was observed that novice programmers often

1https://uk.indeed.com/career-advice/career-development/coding-languages
2https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf
3https://chat.openai.com/
4https://github.com/ssk1216/CodeWBugs

use four different coding approaches to interact with the code gen-
erators: AI Single Prompt (prompt the LLMs to generate the full
code), AI Step-by-Step (use the LLMs to generate code for subtasks),
Hybrid (some part of the code was LLM generated, and the other
was manually coded), and Manual (wrote the code before initiat-
ing the prompt) [21]. As LLMs are being widely used by novice
programmers as a formative feedback generation tool, it is of para-
mount importance that learners are educated about the implications
of over-reliance on these tools. According to Keuning et al. [22],
very few existing automated feedback generation tools generate KH
feedback. Therefore researchers have investigated the use of LLMs
to create effective formative feedback. Although a vast majority
of code explanations are correct, these studies also emphasize the
need to validate the quality of the generated content [33].

3 METHODOLOGY
This section of the report provides detailed information about the
new benchmark and the data analysis approach implemented in
this study.

3.1 Data Selection
We created CodeWBugs using the student submissions collected by
CodeWrite, a web-based tool designed by the University of Auck-
land [10] to support novice programmers. We conducted an initial
data filtering process to identify a group of incorrect programs and
developed JUnit test cases for them. Additionally, incomplete stu-
dent submissions or multiple submissions with minor modifications
in the code were filtered out. A total of 106 programs from 10 pro-
gramming projects that focus on fundamental Java concepts were
considered for this research study (see Table 1). The programs and
the corresponding JUnit test cases that we developed are available
from the CodeWBugs GitHub repository5.

Table 1: Dataset Outline

Project title [ID] No of programs
productIsEven [PISE] 6
replaceCharacterAtPosition [RCP] 12
countOdds [CO] 7
positionOfValueInArray [PVA] 10
magicNumbers [MN] 14
sumValues [SV] 10
swapEnds [SE] 9
reverse [REV] 6
containerNeeded [CN] 17
weeklyPay [WP] 15
Total 106

The task description [TASK DESCRIPTION] for each of the pro-
gramming projects are as follows:

productIsEven Complete the productIsEven() method below.
This method should calculate the product of the two input
values and return true if the product is an even number,
and false if the product is an odd number. For example, the

5https://github.com/ssk1216/CodeWBugs

Investigating the Proficiency of LLMs in Formative Feedback Generation for Student Programmers LLM4Code ’24, April 20, 2024, Lisbon, Portugal

product of 10 and 20 is 200, and this is an even number, so
the method call productIsEven(10, 20) should return true.

replaceCharacterAtPosition The replaceCharacterAtPosi-
tion() method should replace the character at the specified
position in the input String with the replacement character
provided. For example, replaceCharacterAtPosition(1, "hello",
’X’) should return the String "hXllo". You can assume that
the input String will contain at least one character and that
the value of position will be a valid character position in the
String. You should make use of the substring() method to
solve this exercise.

countOdds The countOdds() method takes one array of posi-
tive integer values as input, and counts how many of those
values are odd numbers. For example, if the input array is
1,2,3,4,5 the output will be 3 because 1, 3 and 5 are odd
numbers. The array may be empty, in which case the value
returned should be 0. Complete the countOdds() method
below.

positionOfValueInArray The positionOfValueInArray()
method is passed two parameters - the first is an array ("val-
ues") that contains integers, and the second is a number
("find") to search for in the array. If the number is contained
in the array,the method should return the index position
of the first occurrence of this number. If the number is not
contained in the array, the method should return -1. You
can assume that the array will contain at least one element.
For example, if the input array is: 5,4,3,2,1,4 and the value
to search for (i.e. find) is 4, then the method should return:
1 which is the index position of the first occurrence of the
value 4 in the array.

magicNumbers Two positive integers are said to be magic
numbers if they satisfy the following three properties: both
numbers are the same length (i.e. consist of the same number
of digits) 2) the numbers must be different (i.e. the numbers
cannot be the same) 3) the smaller of the two numbers is a
divisor/factor (i.e. divides with no remainder) of the larger
number For example, the following pairs of numbers are
"magic": 900, 450 3000, 1000 90, 30. However, the following
pairs of numbers are not "magic " because they violate at
least one of the three properties listed above: 100, 100 (these
two numbers are the same) 1000, 100 (the number of digits in
each number is different) 200, 101 (the smaller number is not
a factor of the larger number). Complete the magicNumbers()
method which takes two input numbers and returns true if
they are magic numbers and false otherwise. You can assume
that both input values will be positive.

sumValues The sumValues() methods takes two inputs: an
array of integers, and a boolean called positivesOnly. The
method should calculate the sum of the values in the array,
however if positivesOnly is true, then any negative numbers
in the array should be ignored and not contribute to the sum.
For example, if the input array is -1,2,-3,4,-5,6, then calling
sumValues() with positivesOnly being true should give 12
because only the positive values (2,4,6) are summed, whereas
if positivesOnly is false the output should be: 3 ,because all
of the values in the array are summed. Note: the array may
be empty in which case the method should return 0.

swapEnds Complete the method called swapEnds() which
takes one String as input. It must return a new String, which
is the same as the input String except that the first and last
characters of the String are swapped. For example, if the
input String is "Hello" , the output String must be "oellH".

reverse Mary creates an array of integers, however she realises
that the values have been stored in the array in the opposite
order to what she needs. She therefore would like to define
a method to reverse the order of the values in the array. Her
method, called reverse(), will be passed an array as input
and will return a new array (note: the original input array is
not changed) which contains the same values as the original
input array but in reverse order. For example if the input
array is: 1,2,3,4,5, the new array returned by the method will
be 5,4,3,2,1.

containersNeeded A factory requires a program to calculate
the number of containers needed to store a given number of
items. Each container can fit up to 10 items. In this exercise,
you need to complete the function containersNeeded() which
is passed the number of items to store as an input parameter.
The function should calculate and return the number of
containers sufficient to store that many items. For example,
if there are 10 items to store, then only 1 container is needed.
However, if there are 11 items to store, then 2 containers are
needed (one container will be full, and the other will have
just one item).

weeklyPay In this exercise, the pay that an employee earns
eachweek depends on their age, the number of hours worked
during normal business hours, and the number of overtime
hours worked. The base pay rate for all workers is $15 per
hour. On top of the base rate, each worker over the age of 20
earns an extra $1 per hour for every year their age exceeds
20. So, for example, a worker who is 25 years old, will receive
a base pay rate of 15 + 5 = $20 per hour. However, this addi-
tional, age-based bonus is only valid up until the age of 40. So,
for example, a 40 and a 45-year-old will earn the same base
rate. Finally, any overtime hours are paid at twice the base
rate. Complete the weeklyPay() method below which calcu-
lates the amount paid to an employee in one week, based on
the number of normal and overtime hours worked, as well as
the age. You should work in whole numbers (integers) only.
if (age <= 20) extra = 0 elif (age > 20 and age <=40): extra
= age - 20 (age > 40): extra = 20 baseWithAge = 15 + extra.
result = (normalHours * baseWithAge) + (overtimeHours *
baseWithAge*2).

3.2 Data Analysis
For RQ1, the basic prompt (prompt1) is designed as follows:

Provide a fix for the buggy version of Java code
[SOURCE CODE]

where [SOURCE CODE] represents the student submission.
Prompt1 is initially inputted to each of the LLMs without any

supplementary information related to the bug.
For example, prompt1 for a PISE program is as follows:

Provide a fix for the buggy version of Java code
"boolean productIsEven(int a, int b){

LLM4Code ’24, April 20, 2024, Lisbon, Portugal Smitha S Kumar, Michael Adam Lones, Manuel Maarek, and Hind Zantout

int product = 2 "%(a * b);
boolean evenOr = product == 1;
return evenOr;

}"

The generated response was evaluated against the JUnit test cases
in the CodeWBugs benchmark. For responses that led to a JUnit test
failure, a modified prompt (prompt2) that includes a task description
along with the student submission was provided as input.

The format of prompt2 is as follows:
[TASK DESCRIPTION]
Provide a fix for the buggy version of Java code
[SOURCE CODE]

The task descriptions and the JUnit test cases are available on the
GitHub page for CodeWBugs. The generated response was again
validated for correctness using JUnit tests. The prompt and the
associated response generated by the LLMs were recorded in each
iteration.

The basic prompt for RQ2 (prompt3) is:
What is the error in the Java code?
[SOURCE CODE]

where the source code is the student submission that is buggy.
Additional information about the bug was not provided to the LLM
along with the prompt. For certain failed test results, additional
dialogue with the LLMs was initiated to generate accurate fixes
and feedback. The generated responses were examined for their
accuracy in bug localization, code correction tips, and any additional
information to improve the code quality.

4 RESULTS
4.1 Bug Fixing Ability: RQ1
To answer RQ1, we examined the bug-fixing ability of the LLMs
using CodeWBugs. Of the 106 programs, chatGPT successfully fixed
94.33% of programs using prompt1 and prompt2 combined, while
Code Llama fixed 66.03% of programs. Table 2 provides an overview
of the number of programs successfully fixed by the LLMs using
prompt1 and prompt2 for each of the programming projects.

Code Llama initially fixed 54 programs with prompt1, and for
those programs that failed to generate a correct code, prompt2 was
used as input, resulting in an increase in the count to 70 programs.
Similarly, the number of programs fixed by ChatGPT increased
from 91 to 100. Code Llama and ChatGPT were able to generate an
accurate fix for most of the programs in the PISE category with the
initial version of the prompt (prompt1). Both the LLMs were also
able to achieve high repair rates for programs that involved array-
based manipulation, such as CO and REV with prompt1. Although
both LLMs performed well on the string handling tasks such as RCP
and SE, ChatGPT achieved a higher repair rate than Code Llama.

Code Llama failed to generate an accurate fix for most of the
programs in theMN (1/14) andWP categories (5/15). These two cat-
egories of programs use specific formulae that the LLMs could not
correctly identify using the initial prompt. ChatGPT also struggled
to generate an accurate fix for the MN category of programs using
prompt1; however, the repair rate was high when prompt2 was used.
Thus we can observe that there is high variability in the repair rate
across the projects. In certain cases, Code Llama generated partial

Table 2: Code Llama-34b-Instruct-hf vs. ChatGPT

CodeWBugs Code Llama ChatGPT
ID #programs prompt1 prompt2 prompt1 prompt2
PISE 6 5 1 6
RCP 12 8 3 12
CO 7 7 7
MN 14 1 14
SV 10 7 10
SE 9 4 2 9
REV 6 6 6
CN 17 9 4 16 1
WP 15 1 4 7 8
PVA 10 7 1 10

output or output that included the main() method; however, with
additional dialogue, these were fixed.

4.2 Types of feedback: RQ2
According to Narciss [24], feedback types such as knowledge about
how to proceed (KH) and knowledge about mistakes (KM) are more
beneficial to novice programmers than knowledge of the correct
response (KCR) type feedback. We conducted a detailed analysis of
the generated responses for two programming exercises (PISE and
RCP) using prompt3. These two projects were selected because of
the high repair rate achieved by the LLMs in the initial experiment.
60 responses were analyzed to identify the number of programs
with precisely localized bugs. The generated feedback was analyzed
and classified according to the terminology proposed by Narciss
[24]. Table 3 provides a summary of the findings.

Table 3: Accuracy and type of feedback

ID Code Llama GPT4 Feedback type
PISE 5 6 KCR, KM, KH
RCP 7 11 KCR, KM, KH

Of the 6 programs in PISE, Code Llama was able to localize the
bug in three PISE programs accurately. Including the task descrip-
tion in the subsequent interactions with Code Llama resulted in a
higher number of bugs (total of 5) being localized correctly. Chat-
GPT, on the other hand, was able to localize the bug accurately for
all 6 programs. For example, for an incorrect code sample in the
PISE project:
boolean productIsEven(int a, int b){

int product = 2 %(a * b);
boolean evenOr = product == 1;
return evenOr;

}

the corresponding ChatGPT-generated response was as follows:
"This line calculates the remainder when 2 is divided by the product
of a and b. However, this is not the correct way to check for evenness.
To check if a number is even, you should check if the number divided
by 2 has a remainder of 0." .

Investigating the Proficiency of LLMs in Formative Feedback Generation for Student Programmers LLM4Code ’24, April 20, 2024, Lisbon, Portugal

The generated response includes all three components: it local-
izes the bug (KM) , generates a correct response (KCR) and also
guides the learner (KH) in the right direction. However, in some
instances, the responses generated by the LLMs are incorrect.

For the same buggy code above, the response generated by Code
Llama was: "The error in the Java code is that the modulo operator (%)
has higher precedence than multiplication. Therefore, 2 % (a * b) will
first compute the result of a * b, and then apply the modulo operation
on it with 2. This means that if a and b are both odd numbers, the result
of product will always be 0, regardless of whether their product is even
or not". Additionally, Code Llama provided stylistic suggestions,
such as identifying unused variables, applying naming conventions,
and improving the overall code structure. For the second project,
RCP, out of the 12 programs, ChatGPT could successfully localize
the bug for 11 programs using the initial prompt while Code Llama
managed to do so for 7 programs.

For example, for an incorrect code sample in the RCP project:

String replaceCharacterAtPosition(int position,
String word, char replacement){
String replacedLetter =
word.substring(0,position) + replacement +

word.substring(position+1,
word.length() - 1);

return replacedLetter;
}

The response generated by ChatGPT was: "The error in the provided
Java code lies in the way the string slicing is performed for replacing
a character at a given position. Specifically, the issue is with the
expression word.substring(0, position-1). In Java, the substring method
is zero-indexed, meaning that indexes start at 0. Therefore, if you want
to replace the character at position, you should not subtract 1 from
position in the first part of the substring. The correct way to do it would
be word.substring(0, position). This ensures that the substring includes
all characters up to, but not including, the character at position. Here’s
the corrected version of your method:

String replaceCharacterAtPosition(int position,
String word, char replacement){

String newWord =
word.substring(0, position)
+ replacement +

word.substring(position + 1);
return newWord;

}"

The generated response includes all three components: KCR, KM
and KH. These results cannot be generalized, as there are multiple
instances where the feedback was either incorrect or the generated
code used a different approach than the original code. In the ma-
jority of the instances with Code Llama, the response generated
for the initial prompt was incorrect, and initiating a dialogue with
extra information about the fault resulted in better responses.

As LLMs are probabilistic [12], there might be a lot of variability
in the results for the same set of prompts. This could be mitigated
by running the same prompt repeatedly. Moreover, LLMs in most
cases generated the KCR feedback, and this could negatively impact
the learning experience. Despite the challenges, LLMs seem to

have the potential to address the extensively researched problem
of generating effective formative feedback in CS1 education.

4.3 Merits of including additional information
with the prompt: RQ3

We observed that there was a substantial increase in the bug-fixing
ability of Code Llamawhen advanced prompts were used in compar-
ison to ChatGPT. For example, Code Llama successfully generated
the correct patches for an additional 16 programs that failed when
prompt1 was used. ChatGPT was able to fix an additional nine
programs using prompt2. We also observed that programs in the
MN and WP categories used certain task-specific formulae. The
LLM’s performance was notably deficient for these categories using
prompt1, as shown in Table 4.

Table 4: Prompt1 based LLM evaluation results

Project ID No of programs Code Llama ChatGPT
MN 14 0 0
WP 15 1 7

The inclusion of [TASK DESCRIPTION] in the initial prompt
boosted the performance of Code Llama and ChatGPT significantly,
as shown in Table 2. This highlights the need to craft effective
prompts, which might be a challenging task for novice program-
mers. Therefore, students must be taught the art of constructing
effective prompts to fully utilize the power of LLMs.

5 CONCLUSION
In this paper, we examined the effectiveness of two state-of-the-
art LLMs, Code Llama (code Llama-34b-Instruct-hf) and ChatGPT
(GPT4), in generating precise feedback for CS1 Java programming
assignments. This study could be extended to include other code
LLMs. Additionally, we introduced a new benchmark CodeWBugs
that could be used for future research purposes. The findings of our
study emphasize the need for a comprehensive validation of the
generated feedback because of the high variability in the response.
Further studies are needed to overcome these challenges and to
design effective systems using LLMs in programming education.

REFERENCES
[1] Rishabh Balse, Bharath Valaboju, Shreya Singhal, Jayakrishnan Madathil War-

riem, and Prajish Prasad. 2023. Investigating the Potential of GPT-3 in Providing
Feedback for Programming Assessments. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1 (, Turku, Fin-
land,) (ITiCSE 2023). Association for Computing Machinery, New York, NY, USA,
292–298. https://doi.org/10.1145/3587102.3588852

[2] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2022. Grounded
Copilot: How Programmers Interact with Code-Generating Models.
arXiv:2206.15000 [cs.HC]

[3] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery,
New York, NY, USA, 500–506. https://doi.org/10.1145/3545945.3569759

[4] Brett A Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, et al. 2019. Compiler error messages considered unhelpful: The landscape
of text-based programming error message research. Proceedings of the working
group reports on innovation and technology in computer science education (2019),
177–210. https://doi.org/10.1145/3344429.3372508

LLM4Code ’24, April 20, 2024, Lisbon, Portugal Smitha S Kumar, Michael Adam Lones, Manuel Maarek, and Hind Zantout

[5] Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Utting.
2014. Blackbox: A large scale repository of novice programmers’ activity. In
Proceedings of the 45th ACM technical symposium on Computer science education.
223–228. https://doi.org/10.1145/2538862.2538924

[6] Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao
Sun. 2023. A Comprehensive Survey of AI-Generated Content (AIGC): A History
of Generative AI from GAN to ChatGPT. arXiv:2303.04226 [cs.AI]

[7] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-
Costin, Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg, and Abhinav Jangda. 2022.
MultiPL-E: A Scalable and Extensible Approach to Benchmarking Neural Code
Generation. arXiv:2208.08227 [cs.LG]

[8] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao
Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang,
Philip S. Yu, Qiang Yang, and Xing Xie. 2023. A Survey on Evaluation of Large
Language Models. arXiv:2307.03109 [cs.CL]

[9] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. All syntax errors
are not equal. In Proceedings of the 17th ACM annual conference on Innovation
and Technology in Computer Science Education. 75–80. https://doi.org/10.1145/
2325296.2325318

[10] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
CodeWrite: Supporting Student-Driven Practice of Java. In Proceedings of the
42nd ACM Technical Symposium on Computer Science Education (Dallas, TX, USA)
(SIGCSE ’11). Association for ComputingMachinery, New York, NY, USA, 471–476.
https://doi.org/10.1145/1953163.1953299

[11] Thomas Durieux and Martin Monperrus. 2016. IntroClassJava: A benchmark
of 297 small and buggy Java programs. https://hal.archives-ouvertes.fr/hal-
01272126

[12] Mark Chen et al. 2021. Evaluating Large Language Models Trained on Code.
arXiv:2107.03374 [cs.LG]

[13] Raymond Li et al. 2023. StarCoder: may the source be with you!
arXiv:2305.06161 [cs.CL]

[14] Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. 2018. Common logic
errors made by novice programmers. In Proceedings of the 20th Australasian
Computing Education Conference. 83–89. https://doi.org/10.1145/3160489.3160493

[15] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M. Zhang. 2023. Large Language Models for Software Engi-
neering: Survey and Open Problems. arXiv:2310.03533 [cs.SE]

[16] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The robots are coming: Exploring the implications of openai
codex on introductory programming. In Proceedings of the 24th Australasian
Computing Education Conference. 10–19. https://doi.org/10.1145/3511861.3511863

[17] Nat Friedman. 2021. Introducing GitHub Copilot: your AI pair programmer. https:
//github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer

[18] Ken Goldman, Paul Gross, Cinda Heeren, Geoffrey Herman, Lisa Kaczmarczyk,
Michael C Loui, and Craig Zilles. 2008. Identifying important and difficult
concepts in introductory computing courses using a delphi process. In Proceedings
of the 39th SIGCSE technical symposium on Computer science education. 256–260.
https://doi.org/10.1145/1352322.1352226

[19] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. 2018. Automated clustering
and program repair for introductory programming assignments. ACM SIGPLAN
Notices 53, 4 (2018), 465–480. https://doi.org/10.1145/3192366.3192387

[20] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA,
Article 455, 23 pages. https://doi.org/10.1145/3544548.3580919

[21] Majeed Kazemitabaar, Xinying Hou, Austin Henley, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. How Novices Use LLM-Based Code Gen-
erators to Solve CS1 Coding Tasks in a Self-Paced Learning Environment.
arXiv:2309.14049 [cs.HC]

[22] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2018. A systematic literature
review of automated feedback generation for programming exercises. ACM
Transactions on Computing Education (TOCE) 19, 1 (2018), 1–43. https://doi.org/
10.1145/3231711

[23] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.
QuixBugs: A multi-lingual program repair benchmark set based on the Quixey
Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN international
conference on systems, programming, languages, and applications: software for
humanity. 55–56. https://doi.org/10.1145/3135932.3135941

[24] Susanne Narciss. 2008. Feedback strategies for interactive learning tasks. In
Handbook of research on educational communications and technology. Routledge,
125–143.

[25] Keng-Boon Ooi et al. 2023. The Potential of Generative Artificial Intelligence
Across Disciplines: Perspectives and Future Directions. Journal of Computer
Information Systems 0, 0 (2023), 1–32. https://doi.org/10.1080/08874417.2023.
2261010

[26] OpenAI. 2022. Introducing ChatGPT. https://openai.com/blog/chatgpt Accessed
on August 21, 2023.

[27] OpenAI. 2022. OpenAI Codex. https://openai.com/blog/openai-codex Accessed
on August 21, 2023.

[28] José Carlos Paiva, José Paulo Leal, and Álvaro Figueira. 2023. PROGpedia: Collec-
tion of source-code submitted to introductory programming assignments. Data
in Brief 46 (2023), 108887. https://doi.org/10.1016/j.dib.2023.108887

[29] Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar,
Adish Singla, and Gustavo Soares. 2023. Generating High-Precision Feedback
for Programming Syntax Errors using Large Language Models. (2023). http:
//arxiv.org/abs/2302.04662

[30] James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, Stephen MacNeil, Andrew Peterson, Raymond Pettit, Brent N. Reeves,
and Jaromir Savelka. 2023. The Robots are Here: Navigating the Generative AI
Revolution in Computing Education. arXiv:2310.00658 [cs.CY]

[31] Thomas W Price, Yihuan Dong, Rui Zhi, Benjamin Paaßen, Nicholas Lytle, Veron-
ica Cateté, and Tiffany Barnes. 2019. A comparison of the quality of data-driven
programming hint generation algorithms. International Journal of Artificial In-
telligence in Education 29 (2019), 368–395. https://doi.org/10.1007/s40593-019-
00177-z

[32] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Fer-
rer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code.
arXiv:2308.12950 [cs.CL]

[33] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
Generation of Programming Exercises and Code Explanations Using Large Lan-
guage Models. In Proceedings of the 2022 ACM Conference on International Com-
puting Education Research - Volume 1 (Lugano and Virtual Event, Switzerland)
(ICER ’22). Association for Computing Machinery, New York, NY, USA, 27–43.
https://doi.org/10.1145/3501385.3543957

[34] Mary Catherine Scheeler, Kathy L Ruhl, and James K McAfee. 2004. Providing
performance feedback to teachers: A review. Teacher education and special
education 27, 4 (2004), 396–407. https://doi.org/10.1177/088840640402700407

[35] Adele Smolansky, Andrew Cram, Corina Raduescu, Sandris Zeivots, Elaine Huber,
and Rene F. Kizilcec. 2023. Educator and Student Perspectives on the Impact
of Generative AI on Assessments in Higher Education. In Proceedings of the
Tenth ACM Conference on Learning @ Scale (Copenhagen, Denmark) (L@S ’23).
Association for Computing Machinery, New York, NY, USA, 378–382. https:
//doi.org/10.1145/3573051.3596191

[36] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An
analysis of the automatic bug fixing performance of chatgpt. In 2023 IEEE/ACM
International Workshop on Automated Program Repair (APR). https://doi.org/10.
1109/APR59189.2023.00012

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. arXiv:1706.03762 [cs.CL]

[38] Michel Wermelinger. 2023. Using GitHub Copilot to solve simple programming
problems. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 172–178. https://doi.org/10.1145/3545945.3569830

[39] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In Proceedings of
the 45th International Conference on Software Engineering (ICSE 2023). Association
for Computing Machinery. https://doi.org/10.1109/ICSE48619.2023.00129

[40] Chunqiu Steven Xia and Lingming Zhang. 2023. Conversational automated
program repair. (2023). http://arxiv.org/abs/2301.13246

[41] Jooyong Yi, Umair Z Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-
choudhury. 2017. A feasibility study of using automated program repair for
introductory programming assignments. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 740–751. https://doi.org/10.
1145/3106237.3106262

[42] Jialu Zhang, José Cambronero, Sumit Gulwani, Vu Le, Ruzica Piskac, Gustavo
Soares, and Gust Verbruggen. 2022. Repairing bugs in python assignments using
large language models. (2022). https://doi.org/abs/2209.14876

