Unit Test Generation using Generative Al : A Comparative
Performance Analysis of Autogeneration Tools

Shreya Bhatia*
shreya20542@iiitd.ac.in
IIT Delhi
Delhi, India

Dhruv Kumar
dhruv.kumar@iiitd.ac.in
IIT Delhi
Delhi, India

Abstract

Generating unit tests is a crucial task in software development, de-
manding substantial time and effort from programmers. The advent
of Large Language Models (LLMs) introduces a novel avenue for
unit test script generation. This research aims to experimentally
investigate the effectiveness of LLMs, specifically exemplified by
ChatGPT, for generating unit test scripts for Python programs, and
how the generated test cases compare with those generated by an
existing unit test generator (Pynguin). For experiments, we consider
three types of code units: 1) Procedural scripts, 2) Function-based
modular code, and 3) Class-based code. The generated test cases
are evaluated based on criteria such as coverage, correctness, and
readability. Our results show that ChatGPT’s performance is compa-
rable with Pynguin in terms of coverage, though for some cases its
performance is superior to Pynguin. We also find that about a third
of assertions generated by ChatGPT for some categories were incor-
rect. Our results also show that there is minimal overlap in missed
statements between ChatGPT and Pynguin, thus, suggesting that a
combination of both tools may enhance unit test generation perfor-
mance. Finally, in our experiments, prompt engineering improved
ChatGPT’s performance, achieving a much higher coverage.

CCS Concepts

« Software and its engineering — Software testing and debug-
ging; - Computing methodologies — Artificial intelligence.

Keywords

Large Language Models, Unit Test Generation, ChatGPT, Generative
Al

*These authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

LLM4Code "24, April 20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0579-3/24/04

https://doi.org/10.1145/3643795.3648396

Tarushi Gandhi*
tarushi20579@iiitd.ac.in
IIT Delhi
Delhi, India

Pankaj Jalote
jalote@iiitd.ac.in
IIT Delhi
Delhi, India

ACM Reference Format:

Shreya Bhatia*, Tarushi Gandhi*, Dhruv Kumar, and Pankaj Jalote. 2024.
Unit Test Generation using Generative Al : A Comparative Performance
Analysis of Autogeneration Tools . In 2024 International Workshop on Large
Language Models for Code (LLM4Code °24), April 20, 2024, Lisbon, Portugal.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3643795.3648396

1 Introduction

Unit testing is an integral part of software development as it helps
catch errors early in the development process. Creating and main-
taining effective unit tests manually is a notably laborious and
time-consuming task. To address the difficulties inherent in man-
ual test creation, various methodologies for automating the unit
test generation process have been proposed by researchers. Com-
mon approaches in this field include search-based [4, 5, 9, 13, 31],
constraint-based [23, 28], or random-based [8, 27] techniques, all
aiming to generate a suite of unit tests with the primary goal of
enhancing coverage in the targeted software. However, when com-
pared to tests that are manually created, automated tests produced
by these techniques could be less readable and comprehensible
[14, 16]. This shortcoming makes it difficult for testers with little
experience to learn and hinders the adoption of these strategies,
especially for beginners. As a result, developers might be hesitant
to include these automated tests straight into their workflows. To
address these concerns, recent efforts have explored the use of ad-
vanced deep learning (DL) techniques, particularly large language
models (LLMs), for unit test generation [11, 18, 19].

Advancements in Large Language Models (LLMs), exemplified
by OpenArI’s ChatGPT (GPT-3.5), showcase enhanced capabilities
in routine tasks like question answering, translation, and text/code
generation, rivaling human-like understanding. Unlike other LLMs
such as BART[20] and BERT[10], ChatGPT [6] incorporates rein-
forcement learning from human feedback (RLHF) [7] and a larger
model scale, improving generalization and alignment with human
intention. Widely utilized in daily activities, ChatGPT is crucial
for tasks like text generation, language translation, and automated
customer support. Beyond daily use, large language models are
increasingly applied in software engineering tasks, including code
generation and summarization[3, 32]. These models can also fa-
cilitate the generation of unit test cases, streamlining software
validation processes[19, 29, 34].

https://doi.org/10.1145/3643795.3648396
https://doi.org/10.1145/3643795.3648396

LLM4Code *24, April 20, 2024, Lisbon, Portugal

This paper seeks to explore the advantages and drawbacks of test
suites produced by Large Language Models. We focus particularly
on ChatGPT as a representative of the LLMs. Furthermore, we
want to explore the potential synergy of integrating existing unit
test generators such as Pynguin [21] with Large Language Model
(LLM)-based approaches to enhance overall performance.

We evaluate the quality of unit tests generated by ChatGPT
compared to Pynguin. Based on the code structure, we classify a
sample Python code into 3 categories: 1) Procedural scripts, where
code does not have classes or functions. 2) Function-based modular
code is where there are clear definitions of functions which are
standalone and act like independent units of code. and 3) Class-
based modular code, which is structured around classes and objects,
as the primary units of organisation.

We curated a dataset comprising 60 Python projects, categorizing
them into 20 projects per category, each with a complete executable
environment. In our study, we focus on a designated core module
from each project, ranging between 100-300 lines of code, selected
based on factors such as cyclomatic complexity, function count, and
file interdependency. We then generate unit tests for the selected
modules by prompting them as input to ChatGPT and compare
them with unit tests generated by Pynguin. We aim to address the
following research questions:

¢ RQ1 (Comparative Performance): How does ChatGPT
compare with Pynguin in generating unit tests?

e RQ2 (Performance Saturation and Iterative Improve-
ment): How does the effectiveness of test cases generated by
ChatGPT improve/change over multiple iterations of prompt-
ing?

e RQ3 (Quality Assessment): How correct are the assertions
generated by ChatGPT, and what percentage of assertions
align with the intended functionality of the code?

¢ RQ4 (Combining Tools for Improved Performance):
Can a combination of ChatGPT and Pynguin enhance the
overall performance of unit test generation, in terms of cov-
erage and effectiveness?

This paper validates the findings from existing work [19] which
is very important in the rapidly evolving landscape of LLMs and
additionally explores research questions not covered in the existing
work.

The rest of the paper is organized as follows: We explain the
methodology in §2 followed by results in §3. We discuss related
work in §4 and conclude in §5.

2 Methodology

In this section, we discuss the systematic approach undertaken
to compare the performance of various unit test generation tools,
including the selection of code samples, their categorisation, tool
choices, and evaluation metrics.

2.1 Categorisation Based on Code Structure

The three delineated categories served to capture varying levels of
code organisation:

Category 1 (Procedural Scripts): Code samples are charac-
terised by procedural scripts lacking defined classes and functions.
Many Python programs are scripts of this type.

Bhatia, Gandhi et al.

Category 2 (Function-based modular code): Code samples
with definitions of standalone functions that act as independent
units of code. Such organization of code offers limited encapsulation
with potential reliance on global variables and no inherent hiding
or protection of the data within functions.

Category 3 (Class-based modular code): Code samples con-
taining defined classes and methods. Most of the larger code samples
collected belonged to this category.

2.2 Data Collection

To conduct a comprehensive evaluation of unit test generation tools,
we began by gathering a dataset of Python code samples, encom-
passing a diverse range of projects. Pynguin has a limitation that it
does not work well with Python programs that make use of native
code, such as Numpy [21][22]. For our comparative analysis, we
had to make use of Python projects that did not have a dependency
on such libraries.

Initially, we selected about 60 Python projects from open source
Github repositories! , ensuring a diverse and balanced representa-
tion while being mindful of Pynguin’s limitation. Later we added
an additional set of 49 Python Projects from the benchmark data
used by Lukasczyk et al. [21]. In total, we have 109 Python projects.

Each project contained multiple files, having import dependen-
cies on one another. For the purpose of our test-generation experi-
ments, we decided to select one core module (i.e. one file) from each
project, that we would pass as the prompt input to ChatGPT. We
initially limited our selection of core modules to a size of 0-100 lines
of code (LOC), which we will call ‘Small Code Samples’. We then
expanded the scope to consider core module files of sizes ranging
from 100 to 300 LOC, we will refer to them as ‘Large Code Samples’.

For selecting one core module from each project, we narrowed
down our selection to files lying in the required LOC range. From
these files, we selected the ones which had the highest McCabe
complexity [24] (also known as cyclomatic complexity). For files
with similar complexity, we further looked at the number of func-
tions, the richness of logic, and how frequently they were being
referenced or imported by other files. Files having high complexity,
more function count, and a higher number of import dependencies
were chosen as core modules. The goal was to select modules that
can be understood on their own without providing prior context,
but will also not be too trivial for testing.

We were able to collect a total of 60 core modules under Small
Code samples’, with 20 modules belonging to each of the three cat-
egories. And under the "Large Code Samples’, we collected 49 core
modules, with 20 modules in Category 2, 23 modules in Category
3 and 6 in Category 1 (very few fell in this category, as most of
the projects follow a modular programming approach for easier
maintenance).

2.3 Unit Test Generation Tools

We explored the potential of recent tools, Ticoder and Codamosa;
however, due to their unavailability for direct experimentation, we
opted for Pynguin, a proficient Python unit test generation tool, to
further carry out a comprehensive comparison with ChatGPT. We

The selected projects from all the GitHub repositories can be found here:
https://github.com/Rey-2001/LLM-nirvana

Unit Test Generation using Generative Al : A Comparative Performance Analysis of Autogeneration Tools

INPUT

import threading N
class BankAccount:
def __init__(self):
self.is_open = False
self.balance = None
self.lock = threading.Lock()

> code sample
...................... (code omitted)

def close(self):
if not self.is_open:
raise ValueError(‘account not open’)

self.is_open = False -/
You give unit test cases in pytest for given code. prompt
Write unittests using pytest for the given python code that cover all the edge cases.
OUTPUT
import pytest N

import threading
from example import BankAccount

Test opening an account and checking the initial balance
def test_open_account():

account = BankAccount()

account.open()

assert account.is_open

assert account.get_balance() == 0

> test case output

...................... (code omitted)

Figure 1: Basic Prompt

engaged ChatGPT and Pynguin to generate unit test cases for each
of the identified core modules.

2.4 Prompt Design for ChatGPT

We design our prompt by using clear and descriptive words to cap-
ture the intent behind our query, based on the widely acknowledged
experience of utilizing ChatGPT[1][2].

Our prompt comprises of two components: i) the Python pro-
gram, and ii) the descriptive text in natural language outlining the
task we aim to accomplish as shown in Figure 1. In part i) we
provide the whole code of the selected core module (100-300 LOC).
We are not providing separate units into ChatGPT, as many studies
have[15][30][33][35], as we aim to evaluate ChatGPT’s ability to
identify units when provided with a complete Python Program.
In part ii), we query ChatGPT as follows: “Write Unit tests using
Pytest for given Python code that covers all the edge cases."

The ChatGPT-generated test cases are then evaluated for their
statement and branch coverage against that of Pynguin-generated
test cases; through this, we also find the missed statements by
ChatGPT and Pynguin, that the generated test cases are unable to
cover, and see if they overlap. Next, we designed a new prompt for
ChatGPT that would take in the indices of these missed statements,
and ask it to again generate unit tests so as to improve the coverage.
Following this, we are also piqued by the possibility of iteratively
prompting ChatGPT to keep improving the coverage. We then
repeatedly prompt ChatGPT while updating the prompt with the
indices of the new set of missed statements after every iteration,
till we observe no further improvement in coverage as illustrated
in Figure 2.

2.5 Evaluation Metrics

The efficacy of the generated unit tests was assessed through a
multifaceted approach, employing the following metrics:

LLM4Code *24, April 20, 2024, Lisbon, Portugal

INPUT Iteration 1

class Node: #1
#2
def _init_(self, data): #3
self.data = data #4
self.left = None #5
self.right = None #6
#7
#e
def insert(root, data): #9
if root is None: #10
return Node(data) #11
else: #12\n
{-ereiencOde omitted..............)

code sample with
numbered lines

‘Write unittests using pytest for given python code that cover all the edge cases prompt
The comments on each line indicate line number

OUTPUT Iteration 1

import pytest
from example Import Node, insert, search, findMin, delete, inOrder, preOrder

def test_insert():
root = None
root = insert(root, 50)
test case output

assert root is not Nane

assert root.data == 50

assert root left is None

assert root.right is None
wCOde omitted......

INPUT Iteration 2
class Node: #1
#2
def _init_(self, data): #3
self.data = data #4

....code omitted..............

| code sample with
numbered lines

¢

import pytest

from example import Node, insert, search, findMin, delete, inOrder, preOrder

def test_insert(): test case output
root = None

.code omitted.......

eues)

The above test cases only give 94% coverage

The following lines from the code file are not being covered given by } improvement

the line numbers - 46, 51, 58-60
prompt

Please write more test cases to improve the coverage of the unit tests
OUTPUT Iteration 2

import pytest

from example import Node, insert, search, findMin, delete, inOrder, preOrder

def test_search_2():
root = Node(50)
root.left = Node(30)
root.right = Node{70)
root.left.left = Node(20)
root.left.right = Node(40)
root.right.left = Node(60)
e COdE OMitted. ...

test case output 2

Figure 2: Improvement Prompt

¢ Statement Coverage: Quantifying the extent to which the
generated tests covered individual code statements.

e Branch Coverage: Evaluating the coverage of various code
branches, and gauging the effectiveness of the test suite in
exploring different execution paths.

e Correctness: Checking if the generated assertions are use-
ful for evaluating the intended functionality of the code, in
addition to being correct.

2.6 Experimental Procedure

After gathering the test cases generated by ChatGPT and Pynguin,
we compare their performance based on statement and branch
coverage. We then try to iteratively prompt ChatGPT to improve
its coverage. After reaching the saturation point, where-after no
improvement is observed in ChatGPT-generated tests, we evaluate
the quality of the ChatGPT-generated test cases by looking at their
correctness. We further find out whether any overlap exists in the
missed statements between ChatGPT and Pynguin. Figure 3 shows
the workflow of our empirical analysis.

Moving through, we aim to address the research questions in
the following order:

LLM4Code *24, April 20, 2024, Lisbon, Portugal

Bhatia, Gandhi et al.

Query with missed statements

I

Query
ChatGPT Generated Tests

Data

Coverage Analysis

RQiy query with
missed

statements

ChatGPT

Pynguin H Generated Tests

RQ2-Iterative

Generated Tests

RQ3- Assertion Correctness

A

Coverage Analysis
+

Missed Statements

RQ4-Overlapping Missed >
Statements

Figure 3: Workflow of our Empirical Analysis

¢ RQ1 (Comparative Performance): We measure the differ-
ences in statement coverage and branch coverage between
unit tests generated by ChatGPT and Pynguin across differ-
ent code structures and complexities. We then investigate
the correlation, if any, between cyclomatic complexity, code
structure, and ChatGPT’s achieved coverage.

e RQ2 (Performance Saturation and Iterative Improve-
ment): We then iteratively prompt ChatGPT to improve the
coverage for a sample, given the indices of missed statements.

e RQ3 (Quality Assessment): We check the generated unit
test cases for compilation errors. And among the test cases
that are compiling, we check whether their assertions cor-
rectly test the intended functionality of the code.

¢ RQ4 (Combining Pynguin and ChatGPT for Improved
Performance): In cases where statements are missed, we
look at the extent of overlap in missed statements between
unit tests generated by ChatGPT and Pynguin. We use this
to conclude whether a combination of techniques used by
both tools could be a prospective solution for improved per-
formance.

3 Results

3.1 Small Code Samples (0-100 LOC)

For Category 1 (procedural scripts), Pynguin failed to generate any
unit tests cases. This can be attributed to the structure of Category 1
samples, where there is a lack of structure and Pynguin is unable to
identify distinct units for testing as it relies on properties of modular
code. It was noted that ChatGPT provides recommendations for
refactoring the category 1 programs into modular units. It first
generated the refactored code for the provided code sample and
then proceeded to generate the test cases according to the modified
code.

For Category 2, there is no significant difference in the statement
and branch coverage achieved by Pynguin and ChatGPT. This is
also evident from the p-values (threshold = 0.05) obtained after

Avg Statement Coverage Avg Branch Coverage

0-100LOC ChatGPT Pynguin ChatGPT Pynguin
Category 1 (original) 0 0 0 0
Category 1 (refactored) 97.45 0 96.85 0
Category 2 93.26 90.3 91.68 90.1
Category 3 91.55 97 89.5 96.15

Table 1: Average statement and branch coverage obtained by
ChatGPT & Pynguin for small code samples. Both the tools
give comparable performance for Category 2 and Category 3.

performing Independent t-test [17]. p-value for statement coverage
is 0.631 while it is 0.807 for branch coverage. Both p-values are
higher than the threshold.

For Category 3 also, there is no significant difference in statement
and branch coverage achieved by the two tools, given the respective
p-values are greater than the threshold: 0.218 and 0.193.

In conclusion, ChatGPT and Pynguin give similar coverage for
0-100 LOC code samples as shown in Table 1.

3.2 Large Code Samples (100-300 LOC)

3.2.1 Category-wise Coverage Analysis Since for Category
1, unit test generation is not feasible due to lack of well defined
units, and code-refactoring is a wide domain, we limit our coverage
analysis to category 2 and 3 for large code samples having 100-300
LOC. For Category 2, we observed that there was no significant
difference between the statement and branch coverage achieved by
ChatGPT and Pynguin, with respective p-values greater than 0.05
(threshold); 0.169 and 0.195. For Category 3 as well, ChatGPT and
Pynguin gave similar coverage, signified by p-values 0.677 and 0.580
for statement and branch coverage respectively. These observations
are presented in detail in Table 2 and Figure 4.

To answer RQ1: ChatGPT and Pynguin give comparable state-
ment and branch coverage for all 3 categories. Additionally, the
Mccabe complexity is a metric to evaluate the complexity of a unit

Unit Test Generation using Generative Al : A Comparative Performance Analysis of Autogeneration Tools

® ChatGPT e Pynguin
120 +

100 ~
80 ~
60
40

20 +

Statement Coverage

Sample ID

(2)

LLM4Code *24, April 20, 2024, Lisbon, Portugal

® ChatGPT e Pynguin
120 +

Branch Coverage

Sample ID

(b)

Figure 4: Statement coverage (left) and Branch coverage (right) obtained by ChatGPT (blue) and Pynguin (red) for all code samples

(100-300 LOC).

Avg Statement Coverage Avg Branch Coverage

100-300 LOC
ChatGPT Pynguin ChatGPT Pynguin
Category 2 77.44 88.77 74.77 86.22
Category 3 77.4 79.6 73 76.15
Average on all 40 samples 7743 81.63 73.39 78.36

Table 2: Average statement and branch coverages obtained by
ChatGPT & Pynguin for large code samples. Here also, we find
ChatGPT’s coverage is comparable with Pynguin.

® ChatGPT @ Pynguin

100 -
-]

=]

g 75

[

>

o

[

b

c

E

5 25 +

&

[}

g

@ oy —————+—+—

P S T S R
I e e
12 3 4 6 7 8 9 10 11 12 15 17 18 32 48

Mccabe Complexity

Figure 5: Statement coverage obtained by ChatGPT (blue) and
Pynguin (red) for all code samples at different Mccabe Com-
plexities.

of code. For a code sample, we assign it the max Mccabe complexity,
which is the maximum of all the units present in the code. However,
plotting the average statement coverage against this complexity
measure does not seem to highlight any trend or correlation be-
tween coverage achieved by each tool and the maximum Mccabe
complexity of a code sample as seen in Figure 5.

3.2.2 Iterative improvement in Coverage Till now, the cover-
age analysis was done on the results obtained from the first iteration
of prompting ChatGPT. Providing the missed statements from the

A Category 1 = Category 2 @ Category 3
@ 100
o
i
g 75
o
U A e A A A
T 50
@
£
2 25
3
w
> 0 t t t t t
< lteration 1 lteration 2 Iteration 3 Iteration4 lteration §

Iterations

Figure 6: Average statement coverage obtained after each iter-
ation for all of the 3 categories. We see that improvement in
coverage saturates at 4 iterations.

first iteration, as part of the prompt to ChatGPT, we ask it to fur-
ther improve the coverage for a given code sample. We continue
this process till there was no improvement in coverage between
consecutive iterations. We had to iteratively prompt ChatGPT for 5
times at most since the coverage for most of the samples converged
at iteration 4 as seen in Figure 6.

To answer RQ2: It was observed that the statement coverage in
Category 2 and Category 3 increased by 27.95 and 15.25 respectively
on average. For Category 1, we found that despite the number of
iterations there was no improvement in coverage at any step as
seen in Table 3.

3.2.3 Correctness To assess the correctness of assertions pro-
duced by ChatGPT, we examine the various error categories in the
following manner: i) whether the test cases are compiling, ii) the per-
centage of passing assertions among the compiling test cases, and
iii) the nature of errors encountered for assertions that fail. It is cru-
cial to emphasize that the source code snippets used for generating
these assertions are derived from well-established Python projects
publicly available for general use, meaning that these projects must
have been thoroughly tested to perform what they were intended
to do. This implies that the generated test cases by ChatGPT should

LLM4Code *24, April 20, 2024, Lisbon, Portugal

Bhatia, Gandhi et al.

Best Diff in best Med iters for 5 ;
Avg Coverage Iter1 Tter5 Intersecting missed 17.78
Coverage &leastcov Cov plateau N .

Union missed 50.33

Category 1(100-300 LOC) 56.833 56.833 56.833 0 1
Category 2 (100-300LOC) 63.6 90.5 91.55 27.95 4 Minimum missed 20.29
Category 3 (100-300 LOC) 7245 87.7 87.7 15.25 4 Minimum covered 2.51

Table 3: Iterative Improvement. This table shows the Aver- .

Maximum covered 31.64

age statement coverages achieved in iteration 1 and 5 for all
3 categories. Also depicts the average improvement in state-
ment coverage after 5 iterations and the median number of
iterations it takes to reach the saturation point in coverage
improvement. Best coverage: Average of Best Overall Coverage
over all iterations. Diff in best & least cov: Average Difference
in best & least coverage. Med iters for Cov plateau: Median
iterations to achieve Coverage saturation.

ChatGPT Generated Category 1 Category 2 Category 3

% of incorrect assertions

All Incorrect 57.75 39.4 27.67
Assertion Error 86.93 78.30 70.96
Try/Except Error 0 2.68 3.66
Runtime error 13.07 19.02 25.38

Table 4: Percentage of Incorrect Assertions. This table gives
the average percentage of incorrect assertions generated by
ChatGPT for all 3 categories of code samples. Also specifies the
distribution across 3 causes of failing assertions: i) Assertion-
Error: occurs when the asserted condition is not met ii) Error
in try/except block: occurs when an exception was expected to
be raised, but it wasnt raised iii) Runtime Error : occurs while
the program is running after being successfully compiled.

effectively capture the intended functionality of the code, and the
corresponding assertions should pass if they correctly test the logic
of the code. However, if any assertions do fail, it indicates that those
assertions fail to test the intended functionality of the code and
thus are not correct.

To answer RQ3: As depicted in Table 4, about 39% of generated
assertions are incorrect on average for Category 2 while 28% of
assertions are incorrect on average for Category 3. Separately, we
also checked the correctness of assertions for Category 1 samples,
for which ChatGPT had provided refactored code, and found that
58% of the generated assertions were incorrect. The decrease in per-
centage of incorrect assertions as we go from category 1 to category
3, may imply that ChatGPT’s ability to generate correct assertions
is higher for programs with well defined structure, possibly due to
presence of more coherent and meaningful units in the code.

3.24 Overlapping Missed Statements We looked at the num-
ber of overlapping statements that were commonly being missed
by ChatGPT and Pynguin. We observed, on average, out of a com-
bined total of 50 missed statements, around 17 were common to
both, which means the overlap is significantly lower than the total
number of missed statements.

Table 5: Summary Statistics of missed overlapping statements.
This table shows summary statistics on statements not covered
through the tests generated by ChatGPT and Pynguin. Inter-
secting missed: average number of common statements that
were missed by both ChatGPT and Pynguin. Union missed:
average number of statements that were missed by either Chat-
GPT or Pynguin. Minimum missed: Min of (average number of
statements missed by ChatGPT, average number of statments
missed by Pynguin). Minimum covered: The number of state-
ments that are atleast covered after combining ChatGPT and
Pynguin on average. Maximum covered: It is the maximum
possible number of statements that should be covered after
combining Chatgpt and Pynguin on average.

® Pynguin m ChatGPT Intersecting

800 —
600 +
400 L
200 - |
I LR '
(R ENE-FL N PUINFPOTNAII T | Ml PP D TTLY
©
©

R I T BT B - B T S - N
e s - NNNNN®

No. of Missed Statements

Sample ID

Figure 7: Missed Statements by ChatGPT, Pynguin and their
intersection for each code sample.

To answer RQ4: If we were to combine ChatGPT and Pynguin,
a possible logical inference would be that, the only missed state-
ments would be the ones which were overlapping, and rest all the
statements, which were earlier being individually missed by Chat-
GPT and Pynguin, will now be covered. For example, based on our
evaluation, a combination of the two tools will result in 31 more
statements being covered. This is illustrated in Table 5 and Figure
7. This is also in line with the findings of CODAMOSA [19] which
proposes that a combination of SBST and LLM can lead to better
coverage.

4 Related Work

In this section, we briefly discuss some of the existing tools and
techniques for generating unit tests.

Search-based software testing (SBST) techniques: These tech-
niques [4, 5, 9, 13, 31] turn testing into an optimization problem to
generate unit test cases. The goal of SBST is to generate optimal

Unit Test Generation using Generative Al : A Comparative Performance Analysis of Autogeneration Tools

test suites that improve code coverage and efficiently reveal pro-
gram errors by utilizing algorithms to traverse problem space. This
approach shows potential in lowering the quantity of test cases
needed while preserving reliable detection of errors. EvoSuite [12]
is an automated test generation tool which utilizes SBST. It takes
a Java class or method as input, uses search-based algorithms to
create a test suite meeting specified criteria (e.g., code or branch
coverage), and evaluates test fitness. Through iterative processes of
variation, selection, and optimization, EvoSuite generates JUnit test
cases and provides a report on the effectiveness of the produced
test suite based on metrics like code coverage and mutation score.

Pynguin [21] is another tool which utilizes SBST for generating
unit tests in Python programming language. The variable types are
dynamically assigned at runtime in Python which makes it difficult
to generate unit tests. Pynguin examines a Python module to gather
details about the declared classes, functions, and methods. It then
creates a test cluster with every relevant information about the
module being tested, and during the generation process, chooses
classes, methods, and functions from the test cluster to build the test
cases. We use Pynguin as our baseline for comparing the suitability
and effectiveness of LLMs in unit test generation.

Randomized test generation techniques: Randoop [26] uses
feedback-directed random testing to generate test cases. The basic
idea behind this technique is to generate random sequences of
method calls and inputs that exercise different paths through the
program. As the test runs, Randoop collects information about
the code coverage achieved by the test, as well as any exceptions
that are thrown. Based on this feedback, Randoop tries to generate
more test cases that are likely to increase code coverage or trigger
previously unexplored behaviour.

Al-based techniques: Ticoder [18] presents an innovative Test-
Driven User-Intent Formalisation (TDUIF) approach for generat-
ing code from natural language with minimal formal semantics.
Their system, TICODER, demonstrates improved code generation
accuracy and the ability to create non-trivial functional unit tests
aligned with user intent through minimal user queries. TOGA [11]
introduces a neural method for Test Oracle Generation, using a
transformer-based approach to infer exceptional and assertion test
oracles based on the context of the focal method.

CODAMOSA [19] introduces an algorithm that enhances Search-
Based Software Testing (SBST) by utilizing pre-trained large lan-
guage models (LLMs) like OpenAI’s Codex [25]. The approach com-
bines test case generation with mutation to produce high-coverage
test cases and requests Codex to provide sample test cases for under-
covered functions. Our paper confirms some of the findings from
CODAMOSA. For instance, our results also show that a combination
of LLM and Pynguin (SBST-based) can lead to a better coverage. At
the same time, CODAMOSA does not explore some of the research
questions which we explored in this paper such as (1) How correct
are the assertions generated by LLMs? (2) Do the LLM-generated
tests align with the intended functionality of the code? (3) How
does the performance of LLM improve over multiple iterations of
prompting?

LLM4Code *24, April 20, 2024, Lisbon, Portugal

5 Conclusion

In this study, we discovered that ChatGPT and Pynguin demon-
strated nearly identical coverage for both small and large code
samples, with no statistically significant differences in average cov-
erages across all categories. When iteratively prompting ChatGPT
to enhance coverage, by providing the indices of missed statements
from previous iteration, improvements were notable for categories
2 and 3, reaching saturation at 4 iterations, while no improvement
occurred for category 1.

Notably, individually missed statements by both tools showed
minimal overlap, hinting at the potential for a combined approach
to yield higher coverage. Lastly, our assessment of the correctness
of ChatGPT-generated tests revealed a decreasing trend in the per-
centage of incorrect assertions from Category 1 to 3, which could
possibly suggest that assertions generated by ChatGPT are more
effective in cases where code units are well defined.

ChatGPT operates with a focus on understanding and generating
content in natural language rather than being explicitly tailored
for programming languages. While ChatGPT may be capable of
achieving high statement coverage in the generated unit tests, a
high percentage of the assertions within those tests might be in-
correct. A more effective approach to generating correct assertions
would be based on the actual semantics of the code. This presents
a concern that ChatGPT may prioritize coverage over the accuracy
of the generated assertions, which is a potential limitation in using
ChatGPT for generating unit tests, and a more semantic-based ap-
proach might be needed for generating accurate assertions. Future
research endeavors could delve into several promising avenues
based on the findings of this study. Firstly, exploring how ChatGPT
refactors code from procedural scripts and assessing whether the
refactored code preserves the original functionality could provide
valuable insights into the model’s code transformation capabilities.
Additionally, investigating the scalability of ChatGPT and Pynguin
to larger codebases and more complex projects may offer a broader
understanding of their performance in real-world scenarios. Fur-
thermore, a comprehensive exploration of the combined use of
ChatGPT and Pynguin, considering their complementary strengths,
could be undertaken to maximize test coverage and effectiveness.
Lastly, examining the generalizability of our observations across
diverse programming languages and application domains would
contribute to a more comprehensive understanding of the applica-
bility and limitations of these tools.

References

[1] [n.d.]. OpenAl Platform. https://platform.openai.com

[2] 2022. OpenAl's ChatGPT: Optimizing Language Models for Dialogue -
cloudHQ. https://blog.cloudhq.net/openais-chatgpt- optimizing-language-
models-for-dialogue/

[3] Toufique Ahmed and Premkumar Devanbu. 2023. Few-Shot Training LLMs
for Project-Specific Code-Summarization. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (Rochester, MI,
USA) (ASE ’22). Association for Computing Machinery, New York, NY, USA,
Article 177, 5 pages. https://doi.org/10.1145/3551349.3559555

[4] James H. Andrews, Tim Menzies, and Felix C.H. Li. 2011. Genetic Algorithms

for Randomized Unit Testing. IEEE Transactions on Software Engineering 37, 1

(2011), 80-94. https://doi.org/10.1109/TSE.2010.46

Luciano Baresi and Matteo Miraz. 2010. TestFul: Automatic Unit-Test Gen-

eration for Java Classes. In Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering - Volume 2 (Cape Town, South Africa)

(ICSE ’10). Association for Computing Machinery, New York, NY, USA, 281-284.

hitps://doi.org/10.1145/1810295.1810353

[5

https://platform.openai.com
https://blog.cloudhq.net/openais-chatgpt-optimizing-language-models-for-dialogue/
https://blog.cloudhq.net/openais-chatgpt-optimizing-language-models-for-dialogue/
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1109/TSE.2010.46
https://doi.org/10.1145/1810295.1810353

LLM4Code *24, April 20, 2024, Lisbon, Portugal

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. 2017. Deep Reinforcement Learning from Human Preferences. In
Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30.
Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/

Bhatia, Gandhi et al.

OpenAl 2023. OpenAl Codex. https://openai.com/blog/openai-codex

Carlos Pacheco and Michael D. Ernst. 2007. Randoop: Feedback-Directed Ran-
dom Testing for Java. In Companion to the 22nd ACM SIGPLAN Conference
on Object-Oriented Programming Systems and Applications Companion (Mon-
treal, Quebec, Canada) (OOPSLA ’07). Association for Computing Machinery,
New York, NY, USA, 815-816. https://doi.org/10.1145/1297846.1297902

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In 29th International Conference
on Software Engineering (ICSE’07). 75-84. https://doi.org/10.1109/ICSE.2007.37
Abdelilah Sakti, Gilles Pesant, and Yann-Gaél Guéhéneuc. 2015. Instance Gen-
erator and Problem Representation to Improve Object Oriented Code Cover-
age. IEEE Transactions on Software Engineering 41, 3 (2015), 294-313. https:
//doi.org/10.1109/TSE.2014.2363479

file/d5e2c0adad503¢91f91df240d0cd4e49-Paper.pdf [29
Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: An automatic
robustness tester for Java. Softw., Pract. Exper. 34 (09 2004), 1025-1050. https:
//doi.org/10.1002/spe.602 [30
Pouria Derakhshanfar, Xavier Devroey, and Andy Zaidman. 2022. Ba-

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An Empirical
Evaluation of Using Large Language Models for Automated Unit Test Generation.
arXiv:2302.06527 [cs.SE]

Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo. 2023. ChatGPT vs SBST: A
Comparative Assessment of Unit Test Suite Generation. arXiv:2307.00588 [cs.SE]

&

=

sic Block Coverage for Search-based Unit Testing and Crash Reproduction. [31] Paolo Tonella. 2004. Evolutionary Testing of Classes. SIGSOFT Softw. Eng. Notes
arXiv:2203.02337 [cs.SE] 29, 4 (jul 2004), 119-128. https://doi.org/10.1145/1013886.1007528
[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: [32] Xingyao Wang, Sha Li, and Heng Ji. 2023. Code4Struct: Code Generation for
Pre-training of Deep Bidirectional Transformers for Language Understanding. Few-Shot Event Structure Prediction. arXiv:2210.12810 [cs.CL]
arXiv:1810.04805 [cs.CL] [33] Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang Deng, and Jianwei Yin.
[11] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri. 2022. 2023. ChatUniTest: a ChatGPT-based automated unit test generation tool.
TOGA: a neural method for test oracle generation. In Proceedings of the 44th arXiv:2305.04764 [cs.SE]
International Conference on Software Engineering (ICSE ’22). ACM. https://doi. [34] Shengcheng Yu, Chunrong Fang, Yuchen Ling, Chentian Wu, and Zhenyu Chen.
org/10.1145/3510003.3510141 2023. LLM for Test Script Generation and Migration: Challenges, Capabilities,
[12] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: Automatic Test Suite Genera- and Opportunities. arXiv:2309.13574 [cs.SE]

tion for Object-Oriented Software. In Proceedings of the 19th ACM SIGSOFT [35

Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,

Symposium and the 13th European Conference on Foundations of Software
Engineering (Szeged, Hungary) (ESEC/FSE ’11). Association for Computing Ma-

and Xin Peng. 2023. No More Manual Tests? Evaluating and Improving ChatGPT
for Unit Test Generation. arXiv:2305.04207 [cs.SE]

chinery, New York, NY, USA, 416-419. https://doi.org/lO.l145/2025113.2025179

[13] Gordon Fraser and Andreas Zeller. 2012. Mutation-Driven Generation of Unit
Tests and Oracles. IEEE Transactions on Software Engineering 38, 2 (2012), 278~
292. https://doi.org/10.1109/TSE.2011.93

[14] Sepideh Kashefi Gargari and Mohammd Reza Keyvanpour. 2021. SBST challenges
from the perspective of the test techniques. In 2021 12th International Conference
on Information and Knowledge Technology (IKT). 119-123. https://doi.org/10.
1109/IKT54664.2021.9685297

[15] Vitor Guilherme and Auri Vincenzi. 2023. An Initial Investigation of ChatGPT
Unit Test Generation Capability. In Proceedings of the 8th Brazilian Symposium
on Systematic and Automated Software Testing (<conf-loc>, <city>Campo
Grande, MS</city>, <country>Brazil</country>, </conf-loc>) (SAST ’23). As-
sociation for Computing Machinery, New York, NY, USA, 15-24. https://doi.org/
10.1145/3624032.3624035

[16] Mark Harman, Yue Jia, and Yuanyuan Zhang. 2015. Achievements, Open Problems
and Challenges for Search Based Software Testing. In 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST). 1-12. https:
//doi.org/10.1109/ICST.2015.7102580

[17] Kim Tae Kyun. 2015. T test as a parametric statistic. kja 68, 6

(2015), 540-546. https://doi.org/10.4097/kjae.2015.68.6.540 arXiv:http://www.e-

sciencecentral.org/articles/?scid=1156170

Shuvendu K. Lahiri, Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat

Chakraborty, Madanlal Musuvathi, Piali Choudhury, Curtis von Veh, Jee-

vana Priya Inala, Chenglong Wang, and Jianfeng Gao. 2023. Interactive Code

Generation via Test-Driven User-Intent Formalization. arXiv:2208.05950 [cs.SE]

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen.

2023. CodaMosa: Escaping Coverage Plateaus in Test Generation with Pre-trained

Large Language Models. In 2023 IEEE/ACM 45th International Conference on

Software Engineering (ICSE). 919-931. https://doi.org/10.1109/ICSE48619.2023.

00085

[20] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. BART: De-

noising Sequence-to-Sequence Pre-training for Natural Language Generation,

Translation, and Comprehension. arXiv:1910.13461 [cs.CL]

Stephan Lukasczyk and Gordon Fraser. 2022. Pynguin: automated unit test

generation for Python. In Proceedings of the ACM/IEEE 44th International

Conference on Software Engineering: Companion Proceedings (ICSE "22). ACM.

https://doi.org/10.1145/3510454.3516829

[22] Stephan Lukasczyk, Florian Kroif$, and Gordon Fraser. 2023. An empirical study
of automated unit test generation for Python. Empirical Software Engineering
28, 2 (Jan. 2023), 36. https://doi.org/10.1007/s10664-022-10248-w

[23] Lei Ma, Cyrille Artho, Cheng Zhang, Hiroyuki Sato, Johannes Gmeiner, and
Rudolf Ramler. 2015. GRT: Program-Analysis-Guided Random Testing (T). In 2015
30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 212-223. https://doi.org/10.1109/ASE.2015.49

[24] TJ. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software
Engineering SE-2, 4 (1976), 308-320. https://doi.org/10.1109/TSE.1976.233837

[18

[19

[21

https://arxiv.org/abs/2005.14165
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://doi.org/10.1002/spe.602
https://doi.org/10.1002/spe.602
https://arxiv.org/abs/2203.02337
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/TSE.2011.93
https://doi.org/10.1109/IKT54664.2021.9685297
https://doi.org/10.1109/IKT54664.2021.9685297
https://doi.org/10.1145/3624032.3624035
https://doi.org/10.1145/3624032.3624035
https://doi.org/10.1109/ICST.2015.7102580
https://doi.org/10.1109/ICST.2015.7102580
https://doi.org/10.4097/kjae.2015.68.6.540
https://arxiv.org/abs/http://www.e-sciencecentral.org/articles/?scid=1156170
https://arxiv.org/abs/http://www.e-sciencecentral.org/articles/?scid=1156170
https://arxiv.org/abs/2208.05950
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://arxiv.org/abs/1910.13461
https://doi.org/10.1145/3510454.3516829
https://doi.org/10.1007/s10664-022-10248-w
https://doi.org/10.1109/ASE.2015.49
https://doi.org/10.1109/TSE.1976.233837
https://openai.com/blog/openai-codex
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1109/TSE.2014.2363479
https://doi.org/10.1109/TSE.2014.2363479
https://arxiv.org/abs/2302.06527
https://arxiv.org/abs/2307.00588
https://doi.org/10.1145/1013886.1007528
https://arxiv.org/abs/2210.12810
https://arxiv.org/abs/2305.04764
https://arxiv.org/abs/2309.13574
https://arxiv.org/abs/2305.04207

	Abstract
	1 Introduction
	2 Methodology
	2.1 Categorisation Based on Code Structure
	2.2 Data Collection
	2.3 Unit Test Generation Tools
	2.4 Prompt Design for ChatGPT
	2.5 Evaluation Metrics
	2.6 Experimental Procedure

	3 Results
	3.1 Small Code Samples (0-100 LOC)
	3.2 Large Code Samples (100-300 LOC)

	4 Related Work
	5 Conclusion
	References

