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ABSTRACT
Control code is designed and implemented for industrial automa-
tion applications that manage power plants, petrochemical pro-
cesses, or steel production. Popular large language models (LLM)
can synthesize low-level control code in the Structured Text pro-
gramming notation according to the standard IEC 61131-3, but
are not aware of proprietary control code function block libraries,
which are often used in practice. To automate control logic imple-
mentation tasks, we proposed a retrieval-augmented control code
generation method that can integrate such function blocks into the
generated code. With this method control engineers can benefit
from the code generation capabilities of LLMs, re-use proprietary
and well-tested function blocks, and speed up typical program-
ming tasks significantly. We have evaluated the method using a
prototypical implementation based on GPT-4, LangChain, Open-
PLC, and the open-source OSCAT function block library. In several
spot sample tests, we successfully generated IEC 61131-3 ST code
that integrated the desired function blocks, could be compiled, and
validated through simulations.
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1 INTRODUCTION
In industrial automation, engineers design and implement control
logic code that processes a vast amount of sensor data and sends
control signals to actuators, such as motors, pumps, robots, or heat
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exchangers [10]. This control logic code thus manages many com-
plex production processes, e.g., chemical refineries, power plants,
and mines. Programming control logic is still a largely manual pro-
cess [12, 26]. However, recently LLMs have been found to be useful
for generating programs according to the programming languages
used in industrial automation [14].

While LLMs can synthesize basic control logic from natural lan-
guage prompts [14], control logic in practice is often assembled by
using pre-specified function blocks that encapsulate often used al-
gorithms [26]. Such function blocks are bundled into programming
libraries. Most function block libraries are proprietary to specific
vendors and not available as public data. Therefore, LLMs trained
on public Internet data are not aware of such function blocks and
cannot instantiate them during code generation. This may make
generated control logic code unnecessarily complex, inefficient, and
hard to understand.

Researchers have proposed retrieval-augmented generation of
Python and Java source code, e.g., to integrate formerly written
code or summaries to inform code generation [19, 20, 22]. Further-
more, there are many benchmarks to evaluate the code generation
quality of LLMs [6, 11, 18, 27], which again target general-purposed
programming languages. Before the advent of LLMs, researchers
have also attempted to generate control logic code e.g., using model-
driven development [21, 24, 28] or rule-based processing of speci-
fication drawings [7, 9, 13]. However, there is no approach yet to
utilize retrieval-augmented generation to improve the quality of
LLM-based code generation for industrial control logic.

We propose an LLM-based and retrieval-augmented control code
generation method that can automate many control programming
tasks. It integrates pre-built and well-tested proprietary function
blocks into the synthesized code. The method suggests loading text
embeddings of function block specifications into a vector store and
using this information to augment control logic generation prompts
extracted from requirements documents. The LLM can answer the
prompts with IEC 61131-3 Structured Text (ST) programs, which can
directly be imported into a control programming environment. The
method combines the automation domain knowledge and program
generation capability of LLMs with proprietary domain knowledge
encoded in pre-built function blocks.

To validate the method, we created a prototypical implemen-
tation using open-source tools based on GPT-4, LangChain, and
OpenPLC. We report on an experimental evaluation of the method,
where we generated control logic with function blocks from the
OSCAT function block library, which we then compiled and tested.
Our prototype implementation was able to generate functionally
correct control logic in these tests, which demonstrates the basic
feasibility of the method. Future work shall analyze the method’s
robustness with more and deeper tests.
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2 BACKGROUND
Control engineers write control code for various industrial pro-
cesses, including chemical refineries, power plants, and paper ma-
chines. In these installations, thousands of sensors measure temper-
ature, flow, pressure, and level [10]. The signals are communicated
to automation controllers, which cyclicly execute the control code
(e.g., every 250 ms) on the latest sensor values to compute control
outputs. The control output signals are communicated to actua-
tors, such as pumps, motors, and valves. Control logic may involve
simple boolean logic, PID control, or sophisticated optimization
algorithms.

Control engineers often express control logic in IEC 61131-3
Structured Text, one of the popular PLC programming notations [26].
Its syntax is based on Pascal and C. The language supports typical
control flow constructs, conditional statements, and object-oriented
concepts, such as classes and inheritance. Program organization
units (POU) in IEC 61131-3 structure the source code and can be
specified as reusable function blocks in libraries.

Function block libraries often contain hundreds of pre-built
function blocks for mathematical, logical, signal, and control func-
tions [1]. There are libraries from different vendors and libraries for
specific application domains (e.g., for building automation or min-
ing). They can be loaded into control programming environments
and be instantiated by control engineers so that they do not have
to program all functionality from scratch. The proprietary source
code of the function blocks is usually not available for the control
engineers, who refer to reference specification documents to use
the blocks. Fig. 1 shows a simple function block specification for
computing a mathematical function.

Figure 1: Example: function block specification from OSCAT
open-source library

The requirements for control code design and implementation
often come from process engineers with deep expertise in chemi-
cal production processes. Writing so-called control narratives is a
lightweight method to specify the requirements. These prose texts
(often hundreds of pages) describe the desired control strategies
in natural language and abstract from the vendor-specifics of an
automation system.

They also contain references to tag names (i.e., identifiers of
sensors and actuators), which the control engineers often use for
variable names in control logic. For example, a control narrative
could state to fill a particular tank T101 to 70 percent, keep its tem-
perature at 52 degrees Celsius using the temperature sensor TT107
and the control valve TIC104, and activate the mixer CV401 in tank
T101 for 5 minutes. The control engineer then selects appropriate
pre-built function blocks for the logic and implements the control
logic in IEC 61131-3 ST accordingly. The goal of our method is to
partially automate this process.

3 RETRIEVAL-AUGMENTED CONTROL CODE
GENERATION METHOD

Fig. 2 illustrates our control logic code generationmethod, which ap-
plies thewell-known retrieval augmented generation technique [17].
As inputs, the method uses function block specifications and control
narratives, and as output, the method creates control logic code
in a desired programming notation. The control logic code can be
imported into typical integrated development environments for
PLCs (e.g., CODESYS, TwinCAT, OpenPLC, etc.).

To prepare the control logic code generation steps a) to c) process
the function block specifications and save the results into a vector
store. These steps only need to be performed once per function
block library, later all kinds of control logic generation prompts
can be augmented using such a prepared vector store.

Step a) The Document Loader retrieves the function block
specifications from the source artifacts. Popular frameworks, such
as LangChain, provide more than 100 document loaders for different
types of files (e.g. HTML, PDF, code) and locations (e.g., local storage,
cloud storage, etc.). Function block specifications are often available
as PDF, HTML, or XML documents. Most function block libraries
are subdivided into multiple modules with a separate document
per module. In this case, the Document Loader iterates over a set
of files.

Step b) The Document Chunker splits each document into
smaller chunks so that they can later fit into the LLM’s context win-
dow. It is best practice to create chunks with semantically related
information, which, in the context of our method, naturally fits
the specification of a single function block with its inputs, outputs,
and description of functionality. Single control logic generation
prompts should refer only to a few function block types at once
to remain within the context window limits when augmenting the
prompts with the function block specifications.

Step c) After the document chunker has split a function block
specification, the Text Embedder encodes each chunk into a vec-
tor of floating point numbers. This encoding enables measuring
the distance between two vectors to assess their relatedness. The
smaller the distance, the higher related are the chunks. Such text
embeddings can be created locally or via a call to a public API. Many
text embedding models are available (e.g., text-embedding-ada-002
from OpenAI), which vary in input token length, performance, and
price for API calls.

The Embedder stores the result into a Vector Store, which is
a special type of database to efficiently handle vector data. Vector
stores are optimized for similarity searches, which identify related
vectors given particular query vectors. This can use similarity mea-
sures such as cosine similarity or Euclidean distance. There are both
managed vector stores (e.g., Pinecone, Weaviate, Amazon Elastic-
search) and local vector stores (e.g., Milvus, FAISS, Qdrant), which
have different scalability and usability characteristics.

After processing the function block specifications and populating
the Vector Store, the actual control logic generation process can
start:

Step 1: The Control Narrative Extractor processes the control
narratives available for an automation project and extracts concise
control logic generation prompts out of them. The actual process
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Figure 2: Retrieval-augmented Control Code Generation Method

may vary depending on the specific automation project and formu-
lation of the control strategies. A heuristic is to generate individual
prompts for single control loops. The extractor itself can use vector
encoding and LLM for text summarization but this is not mandatory.
Typical actions of the extraction process include searching for set
point values, alarm limits, and control sequence steps in the control
narratives.

To illustrate the concept, a simplistic control generation prompt
can be formulated as follows:

“Write an IEC 61131-3 Structured text program to use a PID
controller with a set point value of 5.0. Use one or more of the
following pre-specified function blocks.”

Step 2: The Vector Store Retriever creates an encoding of
the prompt using the Text Embedder, which for example looks as
follows:

0.025929883, 0.0029817247, -0.016806405, -0.0059034266,
-0.010274504, 0.017004129, -0.009963797, -0.008699787,
-0.014871551, 0.0028104829, 0.019701626, 0.033358596, ...

Afterwards, using the floating point vector, it performs a simi-
larity search using the Vector Store with a configurable number of
search results. Different search techniques can be used, e.g., based
on similarity score or distance. For example, the Maximum Mar-
ginal Relevance (MMR) search technique aims at improving the
diversity of the search results, thus avoiding too many redundant
results.

Step 3: The similarity search results may now contain several
function block specifications (i.e., input/output parameters names
and types, descriptions of functionality) retrieved from the Vector
Store, which is augmented to the original control logic generation
prompt. The method then queries an LLM with this augmented
prompt. As an answer, the user retrieves control logic code that

Figure 3: Control logic code generated with LLM, which con-
tains instantiation of function blocks based on the specifica-
tion documents.

includes instantiations of the function block types augmented to
the prompt. For example, Fig. 3 depicts the IEC 61131-3 ST code
generated for the prompt stated above. The similarity search re-
turned four results (not shown here for brevity), which included
the function block specifications for FT_PID, CONTROL_SET2, and
CTRL_PWM. These blocks are declared in lines 2-4 of the code
and the remainder of the code uses their correct input and output
parameters. In line 19, the output of the FT_PID block is mapped
to the input of the CTRL_PWM block, demonstrating the correct
connection of these blocks.

Step 4: Finally, the method suggests importing the generated
control logic code into a typical PLC Integrated Development
Environment (IDE). The import may be conducted for example
by file transfer or API calls if supported by the IDE. PLC IDEs
include editors to further refine and debug the code. Usually, such
generated code is integrated into larger programs and projects. A
control engineer can use the PLC IDE to interpret or compile the
code, perform simulation test runs, and eventually download it to
an industrial controller in the production environment.
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4 PROTOTYPICAL IMPLEMENTATION
Creating a prototypical implementation using the LangChain
framework [3] is a pragmaticway to evaluate ourmethod. LangChain
is a collection of tools and API wrappers to manage LLMs. These
include tools for incorporating external knowledge into an LLM,
interfacing with different LLM-APIs, and creating retrieval chains
supported by conversational user interfaces. However, our method
is not dependent on LangChain but can be realized with other
means.

For representative Function Block Specifications, we assessed
different commercial and open-source libraries. We reviewed a
dozen ABB-internal function block libraries from different control
systems and application domains. Ultimately, we decided to use
the open-source function block library OSCAT BASIC to increase
the transparency of our study and reproducibility of our results.
It contains more than 400 function blocks for basic mathematical
operations, signal generation, and automation control, specified in
a 496-page PDF document (4.3 MB). Its complexity is comparable
with several commercial libraries.

As Document Loader LangChain provides several options for
PDF files, e.g., PyPDF, MathPix, PDFMiner, or PDF Plumber. For
the OSCAT library PDF, we selected the PDFPlumberLoader, which
loads the content of each PDF page as a string into a Python Docu-
ment object. It also extracts metadata about the PDF and its pages.
For other function block library specifications, using the PDFMiner
to generate HTML text may be a viable option, since it retains
structural information, such as font sizes, of the text, which can
then be parsed with other tools to recover semantical coherences.

For a Document Chunker that creates chunks for individual
function blocks, there are again different options. With the PDF
loaded into an HTML file, it is possible to find headings based
on HTML tags or font sizes. In our case, for the OSCAT library
PDF document, we built a custom document chunker based on
a regular expression. It matched the common numbering in the
OSCAT document for the subsection heading of each function block
to split the document into strings that matched the description of
an individual function block. This procedure sacrifices generality to
ensure that each document later found through similarity search is
short and thus does not inflate the context augmented to the prompt.
We recovered page numbers for each chunk by text comparison
with the initial page-based splitting of the PDFPlumberLoader. This
allows to preview PDF pages that were considered relevant to the
prompt by the LLM.

For the Text Embedder we used the default embedding model
(OpenAI’s text-embedding-ada-002), which is available through
LangChain and recommended by OpenAI for most use cases. Ac-
cording to OpenAI, this model has replaced five previous models
and showed strong performance regarding text search, code search,
and sentence similarity tasks. It has a context window of 8192 to-
kens and produces embeddings with 1536 dimensions, which is
lower than previous models and thus makes the embeddings more
cost-effective.

LangChain provides interfaces to dozens of Vector Stores. To
store the embeddings, we preferred a simple, local vector database
and selected FAISS-CPU 1.7.4. The database file containing the text
embeddings had a size of 4.5 MBytes. FAISS is implemented in C++

and contains several methods for efficient similarity search. We
used a score-based similarity search, which showed good results.

We collected over 50 Control Narratives from customers and
manually formulated several control code generation prompts based
on them. The wide range of documents used as input assures that
our formulated prompts reflect realistic situations. Consequently,
we did not implement the proposed Control Narrative Extractor
for the prototype implementation. This component could be refined
in future work.

Through an iterative process, we created a common template for
our Control Code Generation Prompts (Fig. 4). It first instructs
the LLM to create a function block instead of an IEC 61131-3 pro-
gram, so that the resulting code can be easily embedded into other
programs. Then the actual description of the desired logic follows.
Afterward, we provide further instructions to utilize the augmented
function block specifications, omit comments and explanations, and
follow a common output structure. The prompt template is generic
but may need modifications for PLC IDEs, which for example do
not support all IEC 61131-3 constructs.

Figure 4: Prompt template for control logic generation

As Vector Store Retriever we used a simple RetrievalQA chain,
which we configured to return the documents found through a
similarity search in the Vector store in the answer. We also added a
conversational user interface using Streamlit, which we enhanced
to display thumbnails of found source documents after each code
generation answer to allow users to check the validity of the code
generation by reading the original function block specification in
the OSCAT library PDF file.

As Large Language Model we selected gpt-4-32k, version 0613,
since it has shown good IEC 61131-3 ST code generation quality in
similar experiments [14]. GPT-4’s temperature parameter was set to
0 to produce as deterministic output as possible, other parameters
were left on default values. Document retrieval including the call of
embeddings API was performed in a sub-second time range while
the delivery of the complete LLM answer took up to 20 seconds.

We selected the OpenPLC-Editor [2] as PLC Integrated Devel-
opment Environment, which is available as open-source and can
be used by other researchers to verify or replicate our results. It
provides an ST-code editor, compiler, and debugger, which allows
to run the code. A Python script (OpenPLC-Importer) can import
custom function blocks into an OpenPLC project.
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5 EXPERIMENTAL EVALUATION
In this section, we provide several tests of the RAG-based control
code generation method using the prototype implementation (code
available on Github [15]). The goal is to assess the principle feasi-
bility of correct code generation. Comparing the generation quality
of different LLMs or comparing the code generation duration with
manual implementation are considered future work.

5.1 Test 1: Sample & Average
For the first test, we embedded the following query into our prompt
template (cf. Fig. 4):

“Sample an incoming signal at one-second intervals and calculate
the mean value of the last eight sampled data points.”

OSCAT provides at least two function blocks that can be used
in ST-code to implement the query. The SH_1 function module is
specified on page 300 of the document and has two inputs and three
outputs (Fig. 5). Notice that the standard output parameter “OUT”
is not listed in the output variables, but only occurs in the function
block drawing and the text. The module samples an input value
with an adjustable sampling time. The FT_AVG function module is
specified on pages 98 and 99 of the document and has four inputs
and one output. It calculates a moving average over each of the last
input values “N”.

Figure 5: OSCAT function modules

Fig. 6 shows the ST-code generated by GPT-4 for our query
augmented with results from a similarity search on the OSCAT
embeddings in the vector store. The code follows the template
structure prescribed in our prompt template. In line 12, GPT-4
correctly calls the SH_1 function block with a timing value of 1
second, to address the “one-second interval” in our query. In line
13, the FT_AVG function block is called. However, GPT-4 used the
SH_1 incorrect variable OUT_MAX as input instead of the correct
variable OUT, because the variable OUT was not explicitly listed in
the specification document. Also, the output variable of FT_AVG
is wrongly named in line 14, since again the OSCAT specification
document did not provide the correct name. We thus manually
corrected both errors and changed the variable OUT_MAX to OUT
and the variable OUT to AVG.

We then imported the code and the required dependent func-
tion blocks into an OpenPLC project. The SH_1 block additionally
required the OSCAT function T_PLC_MS and the FT_AVG block
required the OSCAT function block DELAY and the function INC1.
Then we instantiated our generated function block in a simple IEC
61131-3 ST program and set the input signal to 10.0. The code com-
piled successfully to C-code. We then simulated the code using
the OpenPLC Debugger, which allows us to force input values and
monitor output values. Fig. 7 shows the respective line charts of

Figure 6: Generated ST-code with two OSCAT function blocks
instantiated

the execution for more than 100 seconds (x-axis: runtime in sec-
onds, y-axis: variable value). At 25 seconds, we set the input value
(SIGNAL_IN) from 10.0 to 20.0 and the output value (AVG_OUT)
correctly calculated new average values for eight intervals before
also reaching the value 20.0. This test has thus demonstrated that
the generated code with the manual fixes provides the desired
functionality.

Figure 7: Running the generated ST-code in OpenPLC shows
the expected functionality

5.2 Test 2: Sine Wave & Stair
In a second test, we formulated this query, aiming at the integration
of more complex function blocks:

“Generate a sine wave with a period time of 10 sec, a signal
amplitude of 10, a signal offset of 5, and a signal delay of zero.
Use the output of this as the input to a stair function with a step
size of 2.3.”

In the OSCAT basic library, there are two sine wave generators
and two stair functions, which can be used to implement code
according to the prompt. Fig. 8 shows the code resulting from the
retrieval-augmented generation.

In line 8, the GEN_SIN function block from the OSCAT PDF
page 261 is correctly selected and instantiated. This function block
provides a sine wave generator with a programmable period. In line
9, the STAIR function from the OSCAT PDF page 304 is correctly
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Figure 8: Generated ST-code for prompt requesting sine wave
and stair function

selected. However, in OSCAT this is a callable function, not a func-
tion block that can be instantiated and assigned to a local variable.
In this case, we corrected the error manually, removed line 9, and
changed line 13 to call the STAIR function instead of assigning the
output of a STAIR function block.

Figure 9: Output of sine wave generator function block in
OpenPLC

We then imported the function block code into OpenPLC and
created a simple program instantiating it. We also imported the
GEN_SIN function block and the STAIR function from an OSCAT li-
brary implementation for OpenPLC into the same OpenPLC project
file. The GEN_SIN function block required the additional OSCAT
functions MODR, FLOOR2, and SIGN_R to be imported. Afterward,
the code compiled successfully. Fig. 9 shows the output signals of
the generated function block from a run with the OpenPLC Debug-
ger. We forced different input values to generate different kinds of
sine waves with stair functions.

5.3 Test 3: Control Module
The third test created a custom PID controller and required a high
number of parameters to be set. We formulated the following query:

“Create a PID controller with dynamic anti-wind up and manual
control input for temperature control in an ammonium nitrates
reactor. Set point = 180.0, Kp = 50.0, Ki = 1.2, Kd = 10.0, limits
between -100 and +100. Add a timer to only set the PID controller
to automatic mode after 10 seconds.”

The generated code in Fig. 10 shows that GPT-4 correctly selected
the OSCAT function block CTRL_PID (page 382-384) and the IEC
61131-3 standard block TON to answer the query. The CTRL_PID
block is composed of several other function blocks internally and
has 12 inputs and 3 outputs. Lines 11-16 show that our desired
parameter values were integrated into the code. GPT-4 also auto-
matically correctly converted the kd, kp, and ki parameters from
the prompt as needed for the CTRL_PID block in lines 29-30. It also
correctly connected the timer block TON with the PID controller.

Figure 10: Generated ST-code for PID controller

Fig.11 shows a screenshot from running the generated code in
OpenPLC. We integrated the function block into a program and
manually added simple simulation logic that mimicked a tempera-
ture curve in an ammonium nitrates reactor. The code ran with a
cycle time of 100 ms. Fig.11 shows that the PID controller correctly
switched to auto-mode and wrote control outputs only after 100
ticks (10 secs) when the defined timer ran out. The actual temper-
ature value (MYACT) increases towards the desired set-point of
180 degrees Celsius and then remains on that level. At tick 400,
we changed the set-point to 100 and the PID controller correctly
lowered the temperature to 100 after a few seconds.

Figure 11: Output of the customPID controller function block
in OpenPLC

The three tests have shown that GPT-4 can correctly identify the
required complex function block for control code generation queries
supported by retrieval-augmented generation. While providing
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initial encouraging evidence, these tests are merely spot samples
and not exhaustive. More systematic testing is required in future
work.

6 THREATS TO VALIDITY
In this section, we review our study’s internal, construct, and inter-
nal validity.

The internal validity refers to establishing the causal depen-
dency between the manipulation of independent variables, i.e., con-
trol narratives, function block specifications, and internal system
parameters, to the change of dependent variables, i.e., generated
control code quality. A threat to internal validity is the inherent
non-deterministic behavior of LLMs resulting in non-repeatable
probabilistic generation of control logic. To address this issue we
set the LLM model temperature to 0 to reduce output randomness
as much as possible. To avoid syntactical and functional errors in
the generated code, we compiled and executed the code. This pro-
vided an initial quality assessment of the generation output. We
established internal validity only through three initial tests, but
have not yet exhaustively tested the method. There may be hid-
den interfering variables that have not surfaced in our tests so far.
We also publish our prompts, raw data, and source code to enable
independent replication [15].

The construct validity describes the extent to which the tests
accurately assess what they are supposed to measure. The control
generation prompts are still simple though not artificial, but there is
more complex control logic in practice. As a construct for a control
logic notation, we used IEC 61131-3 ST, which is used in many
automation systems [26]. As LLM, we chose GPT-4 and we based
the tooling on LangChain, both of which are currently popular
choices. The used OpenPLC IDE is less complex than commercial
PLC IDEs, but includes all relevant elements (e.g., code editor, com-
piler, debugger) needed to assess the code generation quality. The
OSCAT library is also available as open-source and rarely used in
commercial systems. Nevertheless, we argue that its complexity is
comparable to several commercial function block libraries.

The external validity refers to the potential for transferring
the obtained results to other contexts and settings. The retrieval-
augmented generation used in our method is independent of the
OSCAT function block library and should apply to many other func-
tion block libraries in academia and practice. Future work could
tackle providing evidence for even more complex libraries and
function blocks. Our method is also not dependent on a particular
industrial automation domain but can generate code for a vast range
of applications, spanning from chemical reactors, and power plants,
to industrial paper machines. IEC 61131-3 features four additional
programming notations besides ST (including graphical notations),
which have the same expressiveness. With appropriate conversion
tools, our approach could be also generalized for these notations.

7 RELATEDWORK
Our method relates to code generation approaches for general-
purpose programming languages and specifically to control code
generation approaches. Dehaerne et al. [4] recently reviewed 37
publications, where machine learning was used for code gener-
ation. Among these, there are several approaches for Java and

Python where code was generated from natural language descrip-
tions. Xu et al. [29] conducted experiments with Python program-
mers on IDE-integrated code generation from natural language
queries and found mixed results regarding the impact on the devel-
oper workflow, time efficiency, code correctness, and code quality.
Peng at al. [23] showed in an experiment with 95 developers that
55% of development time savings are possible with GitHub Copilot.
Vaithilinga et al. [27] analyzed the suitability of LLM-based code
generation tools. There are also several benchmarks to evaluate
LLM-generated code [6, 11]. Liu et al. [18] proposed the EvalPlus
framework for evaluating the correctness of LLM-generated code.

Several frameworks for retrieval-augmented generation of Python
and Java code have been proposed. Liu et al. [19] designed a retrieval-
augmented code generation method using hybrid graph neural net-
works and tested it with programs written in C. REDCODER [22]
integrated formerly written code or summaries into a retrieval-
augmented code generation process. ReACC [20] used an external
context for code completion by retrieving semantically and lexically
similar code snippets from existing codebases. However, none of
these approaches specifically handled control logic for industrial
applications or IEC 61131-3 code.

Koziolek et al. [12] surveyed different approaches for control code
generation in industry and academia. In practice, function blocks
from control libraries are mostly manually instantiated by import-
ing them into a programming environment and instantiating them
in control programs [8]. In some cases where the production pro-
cesses are highly standardized, sophisticated function blocks only
require “glue logic” to connect the blocks. In a few domains, control
logic is directly specified in schematic system control diagrams
that describe the production processes formally, and can then be
easily converted into control logic [5]. While all these practical ap-
proaches support control logic implementation, they have different
constraints and do not allow for generating all kinds of control
logic.

Researchers have proposed several methods for generating con-
trol logic code using model-driven development [12]. Witsch et
al. [28] designed PLC-statecharts to transform UML models into
IEC 61131-3 code. Lukman et al. [21] used a domain-specific model-
ing language called ProcGraph to specify control logic and provide
an IEC 61131-3 code generator. Schumacher et al.[24] transformed
GRAFCET models into IEC 61131-3 control logic. One commercial
PLC IDE (Codesys) provides UML modeling capabilities and allows
transformation into control logic, however many control engineers
are not familiar with UML.

Other researchers generated control logic from piping and instru-
mentation diagrams (P&IDs), which are CAD drawings created by
process engineers [8]. The CAEX transformer applied pre-specified
rules on XML-based P&IDs to generate IEC 61131-3 control logic.
Steinegger and Zoitl [25] imported P&IDs into an ontology and
then generated IEC 61131-3 code. Grüner et al. [7] proposed the
ACPLT Rule Engine to convert CAEX-based P&IDs into a graph
database (Neo4J) and then used graph queries (Cypher) for the
code generation. The AUKOTON method [9] mapped P&IDs to a
domain-specific model in Eclipse Ecore and then generated IEC
61131-3 programs. Koziolek et al. [13] applied a rule-based control
code generation approach in four large-scale case studies. These
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approaches have not yet gained widespread adoption due to miss-
ing standard notations for P&IDs, which complicates developing
robust tooling.

Finally, researchers have started to apply LLMs in the context of
generating control logic code. Koziolek et. [14] created a collection of
100 representative prompts for generating IEC 61131-3 ST control
logic, to test LLM code generation capabilities. In tests, they found
good generation quality by GPT-4. Another approach [16] has tested
generating control logic directly from P&ID drawings using LLM-
based image recognition. None of the surveyed approaches has
attempted retrieval-augmented control code generation with LLMs
as proposed in this paper.

8 CONCLUSIONS
We introduced a novel retrieval-augmented code generationmethod
that can integrate pre-built function blocks into synthesized IEC
61131-3 ST code. The method suggests creating text embeddings for
function block specifications (e.g., from reference manuals), storing
them in a vector store, and using a similarity search to augment
control code generation prompts with information about the blocks.
Tests using a prototypical implementation based on open-source
tooling demonstrated the feasibility of the method.

The method can save control engineers significant time in imple-
menting control logic, as the prompts are easy to formulate, can be
extracted out of requirements documents (control narratives), and
the code generation can be performed in a few seconds. Control
engineers can use the function blocks provided by a specific au-
tomation vendor and use their familiar programming environments.
It is conceivable to run the method in a batch mode for a large series
of control logic generation prompts and let the control engineer
only supervise the process and check the results.

Researchers can use our method and tooling as a template for en-
hancing retrieval-augmented control logic generation. The method
could for example be combined with test case generation to check
the generated code’s quality automatically. Various parameters used
in the method (e.g., for document splitting, configuring the similar-
ity search, or refining the outputs) could be optimized for specific
contexts. Converters could be added to the method to support other
notations than IEC 61131-3 ST.

In follow-up work, we intend to apply the method to commercial
function block libraries and PLC programming environments. The
code generation capabilities of the method shall be tested in more
comprehensive experiments, testing different kinds of control logic
generation prompts and many different function blocks. If success-
ful, the possibilities and limitations for non-interactive batch runs
of the method shall be investigated.
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