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ABSTRACT
LLM-based code generation could save significant manual efforts
in industrial automation, where control engineers manually pro-
duce control logic for sophisticated production processes. Previous
attempts in control logic code generation lacked methods to inter-
pret schematic drawings from process engineers. Recent LLMs now
combine image recognition, trained domain knowledge, and cod-
ing skills. We propose a novel LLM-based code generation method
that generates IEC 61131-3 Structure Text control logic source code
from Piping-and-Instrumentation Diagrams (P&IDs) using image
recognition. We have evaluated the method in three case study with
industrial P&IDs and provide first evidence on the feasibility of
such a code generation besides experiences on image recognition
glitches.

CCS CONCEPTS
• Software and its engineering→ Automatic programming;
Command and control languages; •Applied computing→Computer-
aided design; • Computing methodologies→ Natural language
processing.
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1 INTRODUCTION
Industrial process automation supports many production processes,
e.g., for chemical plants, steel mills, or paper production and covers
a 20 BUSD market. Real-time embedded automation controllers
read vast amounts of sensor data in such processes, execute control
logic, and write outputs to actuators, such as pumps, valves, or
motors. Control engineers program these controllers using stan-
dardized programming notations, such as IEC 61131-3 Structured
Text (ST), whose syntax was inspired by the Pascal programming
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language [17]. Control programming is still a largely manual pro-
cess and could yield significant cost savings from automated code
generation.

Requirements for control programming are encoded as schematic
CAD-drawings (i.e., Piping-and-Instrumentation Diagrams, P&IDs),
tables, and prose text by process engineers [16]. Control engineers
manually interpret these requirements to design and implement
control logic. The manual interpretation is a cognitive challenge
due to the complexity of P&IDs with hundreds of intricate instru-
ments embedded into complex topological structures [4]. Thus, this
process is time-intensive, costly, and error-prone [11].

Due to the potential huge financial impact of code generation,
researchers have proposed many approaches in the past [16]. Previ-
ous approaches involving P&IDs relied on custom object-oriented
notations (e.g., [7, 9, 17]), while in practice still mainly rasterized di-
agrams are used due to convenience, missing standards, and IP risks.
Previous approaches for image recognition on rasterized P&IDs
applied deep learning techniques and achieved high precision and
recall (e.g., [12, 14, 23]), but used limited training data sets and
required still substantial manual rework. Large language models
(LLM) have been found to generate IEC 61131-3 ST code well [18],
and have also been used for image recognition on hand-written
sketches or screenshots to support code generation.

We propose a novel LLM-based control code generation method
utilizing LLM-trained image recognition, domain knowledge, and
code generation capabilities for industrial control logic. The method
involves prompting an LLM with P&ID images, asking it to recog-
nize topological structures, and then iteratively generating control
logic source code. Control engineers can feed the results into con-
trol logic programming environments, compile it, test it, and deploy
it to automation controllers to then control complex production
processes.

For the scope of this paper, we have tested the method in three
exploratory case studies, applying it to P&IDs from large process
plants. We selected ChatGPT/GPT4V and prompted to generate IEC
61131-3 ST control logic. The code was fed into OpenPLC, an open-
source programming environment, and checked for syntactical and
functional correctness. We found mediocre image recognition capa-
bilities with several glitches, but good code generation capabilities
that depend on the prompt fidelity. Our method can improve with
future LLMs and be automated to achieve high programming cost
savings in a non-interactive process.

The next section provides background on control logic program-
ming and introduces our P&ID-based code generation method.
Section 3 describes the first evaluation of the method generating
ST-code for three heterogeneous P&IDs and exploring image recog-
nition and code generation capabilities. It also discusses threats
to the validity of our approach. Section 4 reviews related work in
different areas, before Section 5 concludes the paper.
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2 LLM-BASED CONTROL CODE GENERATION
2.1 Background
Many industrial automation processes, such as chemical process
plants, material handling systems, or industrial drives and motors,
are programmed using IEC 61131-3 Structured Text (ST). The
language syntax was inspired by Pascal and C. For illustration,
Fig. 1 depicts a simple ST program on the right-hand side. ST pro-
vides typical variable declarations, control structures, operators,
and functions. Unlike linear general-purpose programming execu-
tion models, ST-code is assigned to cyclicly executing tasks (e.g.,
every 100 ms) and continuously fed with new sensor data (e.g.,
new temperature or pressure values) as input for the control logic.
Many commercial and open-source programming environments
and execution runtimes are available. Previous experiments have
shown that GPT4 handles ST-code generation well [18].

Figure 1: Piping and instrumentation diagram (P&ID) and
corresponding IEC 61131-3 Structured Text Control Logic to
fill the tank B101 and heat its contents for 5 minutes

Control engineers use ST-code to express different types of con-
trol strategies in industrial automation. For example, PID (propor-
tional, integral, derivative) control loops are used for maintaining
a control variable (e.g., the filling level of a tank) at a desired set
point (e.g., tank 70 percent full). Interlocks are safety-related mech-
anisms that link certain types of automation equipment together.
For example, if a tank is filled more than 90 percent an interlock
between a level sensor alarm and a feeding pump could ensure that
the pump is automatically deactivated to prevent tank bursting.
Another control strategy is sequential logic expressed as ST-code,
which for example is used for start-up and shut-down procedures
as well as for batch productions.

Process engineers usually specify the requirements for these
control strategies, often supported by so-called Piping and Instru-
mentation Diagrams (P&ID). Fig. 1 shows a simplified example
of a P&ID on the left-hand side. It depicts piping, vessels, control
valves, and sensors, among other process components. PID control
loops may be directly specified in the diagram, e.g., LIC_B115 in
the top left corner of Fig. 1 is a PID control loop for the level in
tank B102. Interlocks can either be directly specified in the dia-
gram or be derived by analyzing the process topology. Sequential
logic for starting or stopping a complex production process with
dozens of tanks and pumps may also be derived by interpreting
P&IDs. Process engineers or engineering contractors model most

P&IDs today with computer-aided design (CAD) tools (e.g., Au-
todesk P&ID) and still distribute them as print-outs or rasterized
PDFs, which complicates direct algorithmic processing without
image recognition [2].

Besides P&IDs, process engineers also use I/O lists and control
narratives to express automation requirements for control engi-
neers. I/O lists are typically large tables where each entry represents
an analog or digital signal associated with a particular sensor or
actuator. The tables specify characteristics of the I/O signals and
may already contain alarm limit thresholds and desired setpoints.
Control narratives are prose text requirements specifications and ex-
press the desired control strategies using natural language. Usually,
these texts are formulated independently of a particular control
system and must be translated to vendor-specific programming
notations and control function blocks.

2.2 P&ID-based Code Generation Method
Our method aims at generating control logic by substituting the
human P&ID interpretation and human code writing to the image
recognition and code generation capabilities of a large language
model (LLM). The purpose of the method is to speed up the imple-
mentation of control logic and also to increase the control logic
quality. While we have not automated the entire method yet, it
should be possible to achieve a high level of automation and limit
human interaction to supervision and testing in the future. This
could save significant engineering costs and enable automation
for processes where it is currently cost-prohibitive. The method is
independent of a particular P&ID notation, programming notation,
or LLM. It consists of six steps depicted in Fig. 2.
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Figure 2: P&ID-based Control Logic Code GenerationMethod:
six steps from P&ID to IEC 61131-3 ST

For an automation project, the control engineers would receive
several P&IDs (among other documents) from an automation cus-
tomer or intermediate engineering contractor. Large projects often
include hundreds of complex A1-sized P&IDs with hundreds of
instruments each, each modeling individual process plant segments.
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The P&IDs need to be pre-processed (Step 1) to make them pro-
cessable by an LLM that supports image recognition. For example,
P&IDs provided on paper need to be scanned to be available as
digital images. The images may need color and contrast adjust-
ments to improve image recognition quality. Furthermore, the used
LLM may be limited by the amount of information to process at
once. In this case, complex P&IDs need to be segmented (possibly
automatically), so that smaller image cutouts can be prompted to
the LLM

Step 2 contains the actual code generation and is divided into
three sub-steps. In Step 2.1 first prompts for generating control logic
for control loops are issued to the LLM. This can be based on first
prompting the LLM to detect all explicitly specified control loops in
the current P&ID image. Each control loop may be assigned a pre-
defined PID function block in a batch run. Step 2.1 may be executed
iteratively until all elements of the current P&ID are processed. In
Step 2.2 the LLM is prompted to recognize required interlocks in
the current P&ID and then generate ST-code for them. Finally, in
Step 2.3 the LLM is prompted for sequential logic, e.g., start-up and
shutdown procedures for the shown process.

It is conceivable to execute the prompting and collecting of
control logic from the LLM in a non-interactive batch run by a
software agent similar to AI agents, such as AutoGPT[8]. Such a
batch run may also include quality checks and intermediate checks,
in addition to automatically generated follow-up prompts. Whether
full automation is feasible, however, still needs to be researched in
future work.

After generating the control logic in Step 2, in Step 3 the con-
trol engineer or a software agent imports the LLM-generated code
into a control logic integrated development environment (IDE).
Such an IDE allows human reviews of the code in language-specific
editors that support syntax highlighting, code collapsing, or auto-
completion. In Step 4, the code can be compiled, e.g., to C-code or
directly to machine code. Afterwards, in Step 5, the user can test
and debug the code in a simulation environment in the IDE. Finally,
if the code fulfills the function and non-functional requirements
as verified by simulation runs, in Step 6 the compiled code can
be deployed to the target industrial controllers, e.g., real-time em-
bedded micro-controllers or Industrial PCs. After all the required
automation equipment is installed on-site, the code can be started
to control the production process.

The entire method is generic and allows for many possible ex-
tensions and refinements. Besides P&IDs other control strategy re-
quirements (e.g., I/O lists and control narratives) could be fed to the
LLM for more context. Besides IEC 61131-3 ST, the method could
generate other typical control logic notations, such as function
block diagrams or sequential function charts. Instead of PDF-based
images of P&IDs, so-called smart P&IDs based on object-oriented
notations could be fed into the process as text documents to avoid
complications from possibly unreliable image recognition. Besides
the core control logic, testing and simulation code could be gen-
erated with the method if appropriate prompts can be formulated.
Low-level prompts could be replaced by formulating higher-level
objectives so that the LLM itself finds an optimal procedure to
achieve them. However, for the scope of this paper, we restrict the
following evaluation of the method to a first exploratory test of the
core concepts.

3 EVALUATION
3.1 Methodology
For evaluation, we tested core concepts of the method on concrete
P&IDs from industrial projects. We chose the generation of IEC
61131-3 ST code in favor of other notations. As LLM, we used GPT4
in a version of November 2023. Following an exploratory approach,
we conducted interactive sessions using the ChatGPT chat interface
and did not attempt to run batch queries through the API. This
allowed us to react to the answers and adapt subsequent prompts
to reveal more insights about the particular cases.

To avoid vendor bias and improve replicability, we chose an
open-source IEC 61131-3 programming environment, namely Open-
PLC [1]. It includes the IEC2C compiler to translate the ST-code
to ANSI-C and then compile it to machine code for the OpenPLC
IEC 61131-3 runtime. We used a separately available Python tool
called OpenPLC-Importer to feed the generated ST-code into the
OpenPLC Editor. We also used its integrated simulator to perform
test runs of the control logic.

We performed the code generation on three different P&IDs.
Many P&IDs from customer projects contain proprietary infor-
mation (e.g., recipes, procedures). To avoid disclosing protected
intellectual property, we used publicly available P&IDs from indus-
trial cases. The P&IDs are either directly from real process plants
or created as exemplars by industry consortia. They use different
kinds of symbols, which allows us to check GPT4’s robustness
against different notations. Previous approaches to perform image
recognition on P&IDs were often trained for a specific kind of P&ID
notation.

Our evaluation was exploratory and focused on the use case of
code generation. A systematic evaluation of an LLM’s image recog-
nition ability should use precision and recall metrics for certain
shapes, pipes, or symbols, as done by Kim et al. [14]. We restricted
our analysis to representative samples for specific instruments and
performed no batch runs. We also did not have the original control
logic available that was used in the production plants built after
the P&IDs. Therefore, without a ground truth, we only performed
manual syntax and plausibility checks.

We did not compile all the generated code, since the syntactic cor-
rectness of ST-code generation using GPT4 has been demonstrated
in other works (e.g. [18]). We prompted ChatGPT to generate com-
parably simple and sometimes abstract code since we lacked context
information about the P&IDs and also did not want to introduce ven-
dor bias for example by using proprietary ST-code function block
libraries. The LLM was used as-is, without any retrieval-augmented
generation or fine-tuning.

Our chat sessions for each P&ID were included in a single con-
versation each, so that the context of previous prompts and answers
for the same P&ID may have affected the outcome of later queries.
Each session roughly followed steps 2.1 to 2.3 of our methods, but
we introduced smaller case-specific adaptations to explore spe-
cific aspects. We only performed a few repetitions of individual
prompts to improve the results. We used a few prompt engineer-
ing techniques, e.g., to generate self-contained code or to generate
specific comment notations supported by OpenPLC. Full logs of
our chat sessions are available in supplemental online material
(https://zenodo.org/records/10148136).

https://zenodo.org/records/10148136
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3.2 Case Study 1: Eastman Chemical
A process plant of Eastman Chemical Company, US, was previ-
ously subject to a plant-wide disturbance analysis by Thornhill
et al. [19]. The available P&ID drawing (Fig. 3) contains three dis-
tillation columns, two decanters, and several recycle streams [4].
The specified process also includes 14 controlled actuators and 15
indicators, e.g., for temperature, pressure, and level.

Figure 3: Eastman Chemical Plant P&ID (cutout)

In the P&ID, small circles with tagnames including the letter
’C’ indicate the control points. Upon our prompt, ChatGPT was
able to correctly recognize all 14 control points, i.e. 7 for flow, 3
for level, 2 for pressure, and 2 for temperature. Algorithms could
assign PID function blocks to those controllers that directly control
an individual actuator based on a single sensor reading.

We prompted ChatGPT to identify feedforward cascading con-
trol schemes, which refer to situations where the control output of
a primary controller (e.g., for temperature) serves as input for a sec-
ondary controller (e.g., for flow). The identification of such schemes
requires finding topologically connected controllers (i.e., circles
connected by dashed lines). ChatGPT reported four such control
schemes in the P&ID, of which only one was correct. ChatGPT did
not recognize four other such control schemes in the diagram, and
we prompted to correct its answer (e.g., TC-1 is in a feedforward
control scheme with FC-5, see Fig. 3).

ChatGPT then generated 46 lines of IEC 61131-3 ST code for TC-
1 and FC-5 based on the following prompt: “Write a self-contained
IEC 61131-3 ST function block for the feedforward cascading loop in-
cluding TC-1 and FC-5. Assume both controllers are PID controllers,
provide plausible PID parameters. Name the input variables after
the connected sensors and declare them as input variables. Name
the output variables after the attached controllers or valves and
declare them as output variables. For comments in the source code
only use the (* . . . *) notation, not //.”

The OpenPLC Import Tool allowed to add the function block
into an OpenPLC project (Fig. 4). After instantiating the function
block in a program, the code successfully compiled. This demon-
strated that the generated code is syntactically compliant with IEC

61131-3. For debugging, we ran a simulation for several minutes
in OpenPLC and manually manipulated the temperature values.
This demonstrated that the code fulfills the minimal functional
specifications and can now be fine-tuned for the specific control
scheme. PID parameters and set point values need to be adjusted
to the chemical process, but these were not included in the P&ID.

Figure 4: Generated ST source code and simulation test run re-
sults inOpenPLC for a feedforward cascading control scheme

Afterward, we asked ChatGPT to provide the interlocks required
for distillation column E-7 (cf. Fig. 3). ChatGPT’s answer correctly
specified the required level and temperature interlocks and the
required effects, although it omitted concrete tag names. ChatGPT
also stated required high and low pressure interlocks, despite ab-
sent pressure sensors for E-7 in the P&ID (Fig. 3). Futhermore, it
generated a reboiler flow interlock and an emergency shutdown
interlock for E-7, both of which are plausible. Answering a follow-
up prompt, ChatGPT then generated 76 lines of correct ST-code for
the interlocks.

Finally, we asked ChatGPT to generate a startup sequence for
the process, which requires understanding the flow in the piping
structure. ChatGPT correctly identified the starting point of the
shown process (i.e., In_2_Feed and valve V-1) and described a pro-
cedure that followed through reboiler E-19, column 1, decanter E-5,
and column 2 in nine separate steps. We then prompted for ST code
generation for step 2 of this procedure, i.e., startup of column 1.
ChatGPT generated another 55 lines of ST for this step. The code
included setpoints provided by us in the prompt, and also generated
feed level and heat input adjustments. The logic was simple but
adhered to the prompt and the P&ID.

Despite several challenges in recognizing more complex topo-
logical structures, generating syntactically and functional ST-code
from the P&ID, in this case, was mostly successful. In further tests,
we noticed ChatGPT failing to associate pipe labels to the respec-
tive pipes or hallucinating control points that were not included in
the P&ID. The currently generated code is still abstract, but can be
detailed. In a real setting, ChatGPT would need more contextual
information (e.g., set points, alarm limits, equipment dimensions).
However, as demonstrated, using image recognition ChatGPT can
utilize topological information encoded in a P&ID, e.g., for cascad-
ing loops or startup sequences. Automating our manually executed
prompts in a batch run (e.g., for all controllers, for all interlocks)
would be straightforward.
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3.3 Case Study 2: DEXPI
DEXPI stands for “Data Exchange in the Process Industry” and
has recently become a registered association for developing and
promoting common data standards for chemical process plants.
Large chemical companies, such as BASF, Equinor, or Shell, are
members of this initiative, as well as vendors of popular CAD
applications. The organization has specified an exemplary P&ID
for testing data exchange (Fig. 5). The diagram uses the ISO 10628
notation for P&IDs and includes detailed pipe and equipment nozzle
labels, as well as a few tables with equipment design parameters
(e.g., maximum temperature for a tank or dimensions). The process
contains one large tank, two pumps, two heat exchanges, and four
instruments. It does not depict a real process, but was condensed to
include many P&ID elements to test DEXPI importers and exporters.

Figure 5: DEXPI Reference P&ID (cutout)

We first prompted ChatGPT for controllers in the P&ID, which
are here depicted with green ovals. ChatGPT correctly identified
the temperature controller TICSA 4750.03 and the pressure con-
troller PICSA 4712.02. However, it also included hand switch HS
4750.01 and pressure indicator PI 4712.01 in the list, which are not
controllers. The P&ID used the same graphical depiction with a
green oval connected to a valve or pipeline.

We then asked for ST-code for PID controller PICSA 4712.02, for
which ChatGPT generated 38 lines of code. While the PID control
code was simple and correct, the generated input and output signal
references in this case were all wrong. It generated an input variable
called PV_4712_01, which is not visible in the P&ID, but however
plausible. For the output variable, it used a tag name for the flow
orifice 4750.03, which is in proximity of PICSA 4712.02, but not
connected to it. Instead, the correct output variable would have been
PV 4712.02 (blue dashed line in the P&ID). In this case, ChatGPT
thus severely misinterpreted the P&ID due to an erroneous image
recognition or model inference. The blue connecting line in the
diagram intersects with another dashed blue line belonging to
TICSA 4750.03 and TV 4750.03. Human interpretation unlikely
would have made this mistake.

Asked for interlocks for tank T4750 (Fig. 5), ChatGPT noted that
it lacked specific information about the purpose and functionality
of T4750, but tried to generate a generic list of plausible interlocks
given the graphical specification. This list included interlocks for

level, pressure, and temperature, as well as for pump protection,
mixer/agitator protection, and emergency shutdown. We then de-
cided to provide more information to ChatGPT and prompted for
interlock ST-code generation, but included the tank dimension and
design pressure, which were given as tables in the P&ID into the
prompt.

Figure 6: Generated ST code for interlocks includes plausibly
generated alarm limits

ChatGPT generated 66 lines of ST-code (Fig. 6) for the interlocks
and included the additional specifications in an informed manner.
For example, it plausibly defined a high-alarm limit at 90 percent of
the 4 m tank height, which was 3.6 meters. The generated code was
still abstract and did not refer to concrete tag names. It included
commands to inlet and outlet valves which are not directly visible
in the P&ID. While the code was a decent approximation of the
target source code, ChatGPT correctly stated "Adjustments might
be needed based on the real-world requirements".

Finally, we prompted to generate a startup sequence. ChatGPT
correctly identified that pump P4711 initially feeds the process and
that P4712 needs to be started subsequently. ChatGPT then stated to
activate the heat exchanger at 70 percent nominal capacity, which is
plausible. Specifically for the tank filling of T4750, we prompted for
ST-code generation, which was correctly executed and answered
again with rather abstract code lacking concrete tagnames.

Further tests showed that ChatGPT had trouble finding the
pipeline between tank T4750 and pump P4712. The cause could be
that the path leading to the pump contains several pipe adapters
and annotations and also does not include an (actually mandatory)
arrowhead specifying the flow direction. For the same tank, we
prompted for a list of the attached 7 nozzles, N1, N2, N3, N5, N6, N7,
and N8. Interestingly, ChatGPT created a list of 8 nozzles, N1 to N8,
including a non-existing N4. Here the statistics or model inference
seem to have overtaken the image recognition when performing
the text completion.

While the code generation in this case showed potential, none
of the generated code snippets would be directly usable in practice.
However, our prompts were still rather abstract and relied mostly
only on the graphical information in the P&ID. More contextual
information in the prompts could lead to more practical code.
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3.4 Case Study 3: Butane Regeneration
The third case tackles generating control logic for a butane regener-
ation air and water cooling system. A Korean engineering company
provided the P&ID drawing, which was used in 2019 for a study on
symbol and text recognition for P&IDs based on template match-
ing [12]. Butane is a gas often used as fuel for portable lighters
and the manufacturing of a wide range of chemicals. The specified
process contained two water coolers, one air cooler with two fans,
and a lot of instrumentation mostly for temperature and pressure.

Figure 7: Butane regeneration air cooling P&ID (cutout)

When we first prompted ChatGPT to identify the controllers
in the entire P&ID, we received a list with several hallucinated
controllers that did not appear in the image. We thus simplified the
task and used only the cutout shown in Fig. 7 for image recognition
tasks. This simplification may be justified, as only rare topological
dependencies span the entire diagram. ChatGPT provided a shorter
list of controllers for the P&ID cutout, which however still contained
temperature transmitters which are no controllers, as well as a few
hallucinated controllers. ChatGPT correctly pointed to E-234-009
as an important vessel, but identified the two air fans as pumps.

Generating a PID control loop for the temperature controller
TIC2911 yielded syntactically correct ST code, although ChatGPT
did not use the correct tag names for input and output. ChatGPT
was also able to generate a long list of 13 different interlocks for
the E-234-009 vessel, including fan operation interlocks. Due to
missing sensors, such interlocks would be impossible to implement.
However, ChatGPT could generate appropriate ST-code for the in-
terlocks including plausible min/max values for process parameters.

When we prompted ChatGPT for a detailed startup sequence
for the air cooling system, it generated a 10-step procedure, which
correctly included establishing the inflow, starting the air cooler,
and starting the control loops. We then prompted ChatGPT to
generate ST-code for the previously defined startup sequence, which
yielded rather generic code that simply checked the inlet pressure
and outlet temperature without any timings.

Figure 8: Generated ST-code for starting the butane regenera-
tion air cooling system with timer blocks and state machine.

Therefore we refined the prompt for defining the startup se-
quence “ [...] Include valid analog ranges for the inlet valves. Pro-
vide concrete operational flow rates to target during startup. [...]
Provide timings for gradually increasing fan speed and flow.”

This answer included concrete values for valve openings, as
well as plausible timings for opening them. We used this to re-
generate the startup ST-code. ChatGPT now generated 77 lines of
ST-code with the concrete parameter values and matching timer
function blocks. The startup process was partitioned into three
phases. However, the code contained a bug starting phases 1 and 2
in parallel.

In a follow-up prompt, we pointed out the error to ChatGPT,
which corrected the ST-code accordingly to implement a valid state
machine. The result was 83 lines of ST-code, depicted in Fig. 8. We
learned from this case that partitioning the P&ID and providing
more concrete prompts can improve the code.
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3.5 Threats to Validity
We review the internal, external, and construct validity of our study.
The internal validity refers to the extent to which a study can
establish a causal relationship between manipulations of the in-
dependent variables leading to changes in dependent variables. A
threat to the internal validity of our study is the inherent non-
deterministic nature of LLMs leading to different answers for the
same prompts. To counter this, we publish at least our precise
prompts and the received answers as supplemental online mate-
rial (https://zenodo.org/records/10148136). Researchers can reuse
the prompts for replication studies. The perceived mediocre image
recognition performance of GPT4 in our three cases should be simi-
lar in replication studies. Also, the speed of generating the ST-code
(around 10 seconds) is not affected by our experimental settings.

The construct validity refers to the extent to which the tests
actually measure what they claim to be measuring. In our case,
we selected ChatGPT and GPT4 as typical constructs for an LLM,
although in an eventual realistic large-scale code generation ap-
proach rather the LLM API than the chat interface would be used.
We selected IEC 61131-3 ST as a typical construct for a control
code programming notation, which is based on a widespread in-
ternational standard. Furthermore, in previous experiments, GPT4
showed good syntactical knowledge of IEC 61131-3 ST and overall
good code generation quality. We used PDF-based P&IDs as con-
structs for process engineering requirements specifications, but not
newer smart P&IDs based on object-oriented notations, such as
DEXPI/ISO15296. PDF-based P&IDs are still most widespread in
practice and cover more than 95% of the existing plants.

We used P&IDs from industrial settings, but in some cases pro-
cessed cutouts of them. We ran typical control generation prompts.
Although these do not cover all types of control logic, they should
be representative. The use case of generating control logic source
code from (legacy) P&IDs may be artificial, since in practice for
most projects such code is already available and does not need to
be re-generated. Newer projects could start with smart P&IDs that
do not require image recognition for code generation. We argue
however that still many projects use PDF-based P&IDs, that code
generation could be also done for other purposes (e.g., simulation or
test code), and that many projects require additional control logic
over the lifetime due to maintenance. We generated rather low-
level ST-code and did not include library function blocks, which
are often available in practice.

The external validity refers to the extent to which a study’s
finding can be generalized to other contexts and settings. We argue
that GPT4 can perform image recognition on a vast range of differ-
ent P&ID notations, although its exact training data is unknown.
Furthermore, our code generation approach is not specific for a sin-
gle subdomain of industrial automation, such as oil&gas processing
or pulp&paper handling. ST-code can be used in all kinds of sub-
domains of industrial automation, and GPT4’s domain knowledge
also covers vastly different settings. The approach as such should
also be transferable to other code notations, either other industrial
coding notations, such as function block diagrams or sequential
function charts, or other general purpose coding notations, such as
C#, C++, Python, or Java.

4 RELATEDWORK
We review 1) methods to generate control logic from P&IDs, 2)
methods to perform image recognition on P&IDs, and 3) code gen-
eration using image recognition in other domains.

Koziolek et al.[16] have surveyed several methods to generate
control logic from P&ID drawings. Drath et al. [7] use P&IDs
encoded as XML, apply a set of topological rules, generate an in-
terlocking table, and then IEC 61131-3 ST. The AUKOTON tool [9]
maps XML-based P&IDs and I/O lists into domain-specific models,
before creating IEC 61131-3 ST using a PLCOpen generator. Thram-
boulidis et al. [20] derive SysML models from XML-encoded P&IDs,
which in turn can be transformed into PLCOpenXML control logic.
Arroyo et al. [2] perform image recognition on rasterized P&IDs as
PDF files and synthesize low-fidelity simulation source code. Kozi-
olek et al. [17] derived IEC 61131-3 ST from object-oriented, smart
P&IDs using a rule engine. None of these works utilized LLMs.

Kim et al. [14] provide a recent overview of methods to per-
form image recognition on P&IDs using deep learning and other
approaches. For example, Kang et al. [12] use template matching
and OCR to detect symbols, lines, and text in P&IDs. Yu et al. [22]
employ connectionist text proposal networks (CTPN) to perform
symbol, text, and line recognition on P&IDs and achieve a 91.6
percent accuracy for symbols. Yun et al.[23] apply region-based
convolutional neural networks on P&IDs and find a 98% symbol
recognition rate in their experiments. Kim et al. [15] perform deep
learning and object character recognition on a data set of P&IDs and
report a 97.2% precision for symbol recognition. A study by Kim at
al. [14] uses deep neural networks on P&IDs for symbol, text, and
line recognition, reports an average precision of 99.5% for topology
reconstruction, but also finds that 2-4 hours of manual re-work are
required for each P&ID. None of these approaches utilized LLMs or
generated IEC 61131-3 ST control logic.

Several otherworks tackle code generationusing image recog-
nition in other application domains. Karasneh et al. [13] per-
form image recognition on rasterized UML-diagrams and generated
XMI-based files that could feed classical UML-based code genera-
tion tools. Chen et al. [6] conduct image recognition on 80 UML
images as a precursor for code generation. Asiroglu et al.[3] recog-
nize hand-drawnmock-ups for web pages and generate HTML code.
Similarly, Yashaswini et al.[21] propose an HTML code generator
for screenshot images and hand-drawn sketches. Camara et al. [5]
found that ChatGPT had limitations regarding software modeling,
citing syntactic and semantic deficiencies, and a lack of consistency
and scalability. Another interesting direction is generating P&IDs
with LLMs, as performed by Hirthreiter et al. [10]. None of the
other approaches for code generation used as sophisticated images
as P&IDs or generated control logic.

Compared to related work, our method combines the recent
advancements of LLMs with previous work on code generation for
industrial application cases [18]. Using pre-trained LLMs avoids
custom LLM training and can be more flexible due to their large
training sets. Unlike custom-trained models, it can also integrate
the domain knowledge and code generation capabilities of LLMs
into the code generation process.

https://zenodo.org/records/10148136
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5 CONCLUSIONS
This paper has proposed a novel LLM-based code generationmethod
specifically for control logic in industrial automation. We have eval-
uated the method by feeding P&IDs to GPT-4V and testing its
capabilities for recognizing topological structures and synthesizing
code based on domain knowledge. While in its current version,
the image recognition still showed several glitches, we provided
evidence for the method’s principle feasibility. Working code for
complex automation tasks was generated within several seconds.
Due to the structured requirements specifications, it is conceivable
to largely automate the code generation process in this domain,
thus advancing over typical interactive co-pilot code generators
used in other domains.

Practitioners can already adopt the method in their projects and
use our prompts as templates for formulating their own based on
their specific use cases. Implementing tool support for the method
and increasing its level of automation is an obvious next step that
could be supported by developers. Practitioners could contribute to
comprehensive and representative P&IDs data sets that could be
used to systematically analyze the image recognition capabilities
of future LLMs. With our method, researchers get a starting point
for combining research on deep learning-supported image recogni-
tion on P&IDs with research on industrial code generation. Other
researchers can refine the method by introducing additional forms
of code generation or designing methods to perform automatic
plausibility checks on the LLM outputs.

Future work involves testing the method on larger data sets,
refining the used prompts for code generation, and adding more
automation. In non-interactive batch runs, an entire P&ID could be
traversed with numerous prompts to generate a large collection of
source code files. This approach could be extended to entire sets
of P&IDs for a large automation project. Such an approach would
need sophisticated and partially automated means to check the
correctness, plausibility, and compatibility of the generated code.

Besides P&IDs, other artifacts, such as I/O lists or control narra-
tives should be fed into the code generation process to improve the
code generation fidelity and correctness. This could be implemented
using retrieval-augmented generation in a multi-modal prompting
scheme. In the same manner, vendor-specific programming nota-
tions or pre-existing control function blocks could be fed into the
generation to reduce manual re-works even further. Besides control
logic, other kinds of code could generated, for example, simulation
code or code for human machine interfaces.
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