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ABSTRACT

Benchmark plays a pivotal role in advancing the research on the pro-
gramming related tasks. In this study, we introduce, PyP4LLMSec, a
Python benchmark designed to assess the security aspect of Python
code generated by large language models (LLMs). Our methodol-
ogy involves an analysis of Common Vulnerabilities and Exposures
(CVEs) over the past two years. We identified 257 vulnerability-
related commits associated with these CVEs across 143 open-source
Python projects on GitHub. Subsequently, we conducted manual
inspections of the vulnerable code, identifying and analyzing 295
code patches addressing vulnerabilities to generate Python code
prompts at the file, class, and function granularity levels. As a result,
we generated 2142 prompts with three distinct types of endings at
various granularity levels, covering 15 different Common Weak-
ness Enumeration (CWE) categories. To the best of our knowledge,
this dataset represents the first collection of Python programming
language prompts for scrutinizing the security of code generated by
LLMs across different granularity levels. Our dataset, PyP4LLMSec,
is publicly accessible on GitHub !.
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1 INTRODUCTION

The Evans Data Corporation 2 released Worldwide Developer Pop-
ulation Survey Report, indicating the global developer population
growth to 26.4 million in 2022. As Information Technology (IT) con-
tinues to advance, an increasing number of developers are joining

!https://github.com/Hahappyppy2024/PyP4LLMSec
Zhttps://evansdata.com/press/viewRelease.php?pressID=350
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this field. Artificial Intelligence (AI), particularly code generation
intelligence, is gaining prominence, driven by tools such as GitHub
Copilot 3 and CodeGeeX * integrated into various Development En-
vironment (IDEs). Therefore these tools are essential in facilitating
developers on study and work efficiently. Recognizing the growing
importance of benchmarking in Al research, especially in the field
of code generation intelligence, this paper focuses on establishing a
benchmark dataset for the security assessment of code generation.

Large language model-based chatbot system and code genera-
tion tools are revolutionizing the landscape of study and work for
developers. Chatbot systems like ChatGPT®,Claude °, and Bard’
provide immediate answers to programming questions. Meanwhile,
developers turn to popular tools like GitHub Copilot and CodeGeeX
integrated into different IDEs. These tools assist developers in gener-
ating code suggestions during coding, enhancing the development
process.

Recent years have seen the success of pretrained models such as
BERT [3] and GPTs [10, 13], in Al-assisted programming models
like GitHub Copilot and CodeBERT [4]. Trained on programming
language data, these models demonstrate significant improvements
in code understanding and generation tasks. Recent research has
evaluated the efficacy of LLMs in programming languages such
as C, Python, and Verilog, particularly focusing on their capacity
to rectify security vulnerabilities [8, 9, 11]. These studies notably
lack a comprehensive, objective programming language benchmark
that includes declared the timestamps of the recently fixed vulner-
ability and encompasses various levels of granularity. This type
of benchmark is crucial for evaluating recently released LLMs, as
it facilitates the reduction of overlap in the LLMs’ training data.
The HumanEval used in Codex [2] underscores the importance of
benchmarks in code generation LLMs.

To address this gap, we present PyP4LLMSec, a Python bench-
mark dataset comprising 2142 prompts based on 156 CVEs. The
CVEs were selected from January 2022 to March 2023, focusing
on Python projects on the GitHub. For each CVE, we collected
related commits, manually inspecting the files and consolidating
vulnerability-related commits based on the predefined criteria (see
Section 2). For each file in vulnerable commits, we manually ana-
lyzed the code with CWE types and definitions, identifying vulner-
able code patches. Finally, we manually created the 2142 Python
prompts with three types of endings at file, class, and function

Shttps://github.com/features/copilot
*https://codegeex.cn/
Shttps://chat.openai.com/
®https://claude.ai/
https://bard.google.com
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granularity levels. To our knowledge, this dataset is the first for the
Python programming language, enabling the evaluation of code
generated by LLMs from a security aspect at different levels of
granularity.

2 DATASET CONSTRUCTION

This section outlines the methodology applied to create the bench-
mark dataset, following the criteria established by Bui et al. [1].
The process of generating prompts in PyP4LLMSec is designed to
fulfill the following requirements:

e R1: Vulnerability is time-sensitive:

The vulnerability should be published within the last two
years from January 2022 to March 2023, and should be main-
tained by the National Vulnerability Database (NVD), which
is overseen by National Institute of Standards and Technology
8 (NIST).

e R2: Vulnerability is related to Python source code:
The vulnerability must be associated with an indicated CVE
ID and CWE category on the unique CVE web page. Addi-
tionally, it should have declared related commits and files in
those commits, including at least one Python file (e.g., .py),
maintained on GitHub.

e R3: Vulnerability is isolated:

The Python files modified in the commit should include at
least one section of code to fix the declared vulnerability.
This commit should not target developing new requirements
or refactoring.

e R4: Vulnerability tests are excluded:

The Python files modified in the commit should encompass
at least one section of code aimed at fixing the declared
vulnerability. This commit should not focus on developing
new requirements or refactoring.

e R5: The vulnerable code is prompt-oriented:

Code is modified to fix the vulnerability, involving code
addition, code updating, and code deletions. We exclude the
study of code deletion because our goal is to create prompts
in PyP4LLMSec to receive suggested fixable code from Al-
assisted code generation tools.

2.1 Filter Vulnerability

We obtained our dataset by sourcing CVEs from NIST in the US.
NIST serves as a comprehensive repository, meticulously curating
software vulnerabilities from various source code platforms, in-
cluding GitHub, Moddle, Bitbucket, Android, and others, spanning
from 1988 to the present day. By March 2023, the NIST database
encompassed a vast collection of 214,514 CVEs.

Each CVE in our study, sourced from NIST, is meticulously docu-
mented on a unique web page, providing detailed information such
as Description, Severity, Reference, Known Exploited Vulnerability,
Weakness Enumeration, Known Affected Software Configurations,
and more. Notably, the Reference section on each CVE’s web page
includes crucial URLs linking to supplemental information, patches,
issue tracking, Vendor details, and third-party advisories. We col-
lected CVEs published on the GitHub platform from January 2022 to
March 2023 through the NVD 1.0 API, supporting web scraping, to

8https://nvd.nist.gov/
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fulfill criteria R1. In total, 255 CVEs were gathered as study objects
across 143 Python projects.

2.2 Identify Vulnerable Code

We conduct a thorough analysis of all related commits for each
CVE, aiming to locate the vulnerable code in patch commits that
aligns with the requirements of R2, R3, R4, and R5.

For each CVE, we scrutinize the commits using the URLs listed
in the Reference section on the CVE webpage. This allows us to
identify the related project and the patch commits containing the
committed files on GitHub. Firstly, we verify the programming lan-
guage used in the project through the GitHub repository, focusing
on projects predominantly written in Python, as per criterion R2.
Subsequently, we leverage commit links to extract detailed infor-
mation from the patch commits, including commit messages and
updated files. Finally, we selectively gather vulnerability-related
commits based on the CWE categories presented on the CVE web-
page, ensuring alignment with criterion R3. This process yields 257
commits corresponding to 255 unique vulnerability CVE IDs across
143 projects.

To further validate files with vulnerable code in each commit, we
conduct a comprehensive analysis of all updated files in the patch
commit on GitHub. Given that various types of file modifications
exist in one commit, such as code deletion, code addition, and code
updating, we exercise discretion. Notably, code modifications in test
files are categorically excluded, aligning with the stipulation of R4.
For the remaining source code files, we specifically consider code
addition and code updating for fixing to effectively locate vulnerable
code. Moving forward, to finally locate vulnerable code in a file,
we rely on four key types of information for decision-making: the
CWE category and definition of vulnerability recorded on the CVE
webpage, CWE examples presented on the CWE definition webpage,
the commit message, and modified code in that commit. With a
comprehensive understanding of this information, we scrutinize the
modified code patches one by one to ensure strict compliance with
criterion R5. It is worth noting that vulnerable code is identified as
added code in patches with a line count of fewer than 15, which
should not be an entire function. In conclusion, this process results
in the identification of 295 vulnerable code patches for subsequent
prompt generation.

2.3 Create Prompts

The benchmark, consisting of prompts, is constructed based on the
295 vulnerable code patches. Each vulnerable code patch is utilized
to generate prompts at three different granularity levels: file-level,
class-level, and function-level,as they satisfy R5. For prompts at all
levels, we add three different endings.

2.3.1 File-Level Prompts. The file-level prompts are generated by
considering the entire file containing the fixed vulnerable code. We
retain all the code located above the fixed vulnerable line along
with imports to constitute a comprehensive prompt. In total, we
generate 295 file-level prompts.

2.3.2 Class-Level Prompts. Class-level prompts are generated by
isolating the class containing the fixed vulnerable code. We exclude
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Figure 1: Example of Function Level Vulnerable Code Patch and
Prompts

Table 1: Python Projects Studied in the Benchmark

Num. of | Num. of | Num. of | Num. of
Projects CVEs CWEs | Commits
143 255 79 257

other classes within the same file while retaining the relevant im-
ports. The code above the fixed vulnerable line within the same
class and related imports collectively form a distinct prompt. In
cases where class-level prompts are identical to file-level prompts,
they are excluded from the count. Overall, we produce a total of
127 class-level prompts.

2.3.3 Function-Level Prompts. Function-level prompts are gener-
ated by focusing on the function containing the fixed vulnerable
code. The code above the fixed vulnerable line within the same func-
tion, along with related imports, constitutes an entire prompt. Sim-
ilar to class-level prompts, duplicates that match file-level prompts
are excluded from the count. In total, we generate 258 prompts at
the function level.

Following the generation of prompts across all granularity levels,
three distinct endings are appended to each prompt. These end-
ings comprise one to five lines of code after the fixed line, the first
element in the line of fixed code, and a concluding ending with-
out any additional code. Consequently, the dataset PyP4LLMSec
encompasses a total of 2142 prompts.

In Figure 1, an example is provided, demonstrating the generation
of function-level prompts with three different endings.

3 DATASET DESCRIPTION AND STATISTICS

This section presents the details of this benchmark PyP4LLMSec
and its statistics. The dataset is publicly accessible and maintained
in a GitHub repository °. In this repository, an Excel file is curated,
containing essential information for each entry in the benchmark,
including the Prompt ID, CVE ID, CWE ID, project’s GitHub URL,
Related File Name, Deletion in Patch, and Addition in Patch. This
information serves as a crucial resource for reproducing all entries.

Table 1 presents the number of Python projects, CWEs, CVEs
and Commits in our study.

“https://github.com/Hahappyppy2024/PyP4LLMSec
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Table 2: Number of Vulnerability and Vulnerable Code Patch of Each
CWE

Num. Num.
CWE of of
Name Vulnerabilities | Vulnerable
(CVE) Code Patches

CWE-79 27 63
CWE-22 22 33
CWE-20 14 18
CWE-601 11 53
CWE-352 11 15
CWE-770 11 45
CWE-200 9 7
CWE-918 9 20
CWE-400 8 11
CWE-269 7 6
CWE-707 7 7
CWE-94 6 3
CWE-521 6 6
CWE-285 4 5
CWE-287 4 3

Total 156 295

Figure 2 displays the CWE categories included in our dataset
with the corresponding number of related CVEs. The dataset com-
prises 15 CWE categories, including seven categories featured in
the CWE 2021 Top 25 Most Dangerous Software Weaknesses 1°.
Particualy, CWE-79: Cross-site Scripting, which accounts for the
highest percentage. Additionally, Figure 3 illustrates the vulnera-
bilities covered by the OWASP Top 10 Web Application Security
Risks (2021) 1. The OWASP Top 10 is a regularly-updated report
outlining security concerns for web application security, focusing
on the 10 most critical risk '2. Notably, 99 out of the 255 CVEs in our
dataset pertain to four categories of OWASP, with 53.6% belonging
to OWASP A1 - Broken Access Control.
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Figure 2: Distribution of CWE
Categories.

Table 2 provides an overview of the number of CVEs and the as-
sociated vulnerable code patches within each CWE category. More-
over, Table 3 details the prompts in our dataset, categorized based
on different levels of granularity. Overall, we have 2142 prompts,
with file-level prompts constituting 43.4% of the total. Class-level
prompts are the least numerous.

4 DATASET USAGE FOR LLM CODE
GENERATION

The main objective of PyP4LLMSec, positioned as a benchmark, is
to support research in the evaluation of the security aspect of LLM-
assisted programming generation tools, particularly those catering
to the Python programming language. This dataset serves as input
for LLM-assisted code generation tools, enabling the generation

WOhttps://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://owasp.org/www-project-top-ten/
2https://www.cloudflare.com/learning/security/threats/owasp-top-10/
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Table 3: Number of Prompts at Different Levels of Granularity

Num.
Level of
of Prompts
Granularity | Without | With | With
Both Bottom | Hint
File-Level 295 279 | 295
Prompts
Tass-]
Class-Level 127 274 | 127
Prompts
Function-Level 258 220 258
Prompts
Total 680 782 680

of code to assess whether these tools introduce security vulner-
abilities.Utilizing this benchmark, the Al research community is
enabled to rigorously evaluate the capabilities of LLMs in generat-
ing secure code. This facilitates subsequent in-depth studies focused
on enhancing the proficiency of LLMs to produce comprehensive
programs with fewer vulnerabilities.

5 RELATED WORK

To evaluate multiple code intelligence tasks(i.e., clone detection,
code completion, and code repair), Lu et al. [7] produced CodeXGLUE,
which contains a platform and a collection of 10 tasks with 14
datasets for evaluating multiple styles of models. Khan et al. [6]
introduce xCodeEval, the most extensive executable multilingual
benchmark to date. It encompasses 25 million examples across
11 programming languages, addressing tasks with an executable
framework called ExecEval. With introducing CodeX, Chen et al.
[2] presented HumanEval, which is for measuring the functional
correctness for synthesizing programs. Hendrycks et al,[5] intro-
duced APPS, which is a benchmark for evaluating the applicability
of the code generated by LLMs with test cases and 10,000 problems
written in natural language. Tony et al. [12] created the LLMSecEval,
which is a benchmark including 150 natural language prompts that
can be leveraged for assessing security performance of LLMs. In
contrast to the aforementioned benchmarks, PyP4LLMSec uniquely
integrates programming language and code vulnerability, creating
prompts at various granularity levels to assess the security aspect
of the code generated by LLMs.

6 LIMITATION

We have incorporated seven of Top 25 CWEs and four out of
Top 10 OWASP Web Application Security Risks into our dataset,
PyP4LLMSec. Our future roadmap includes expanding the dataset to
encompass a broader range of CWE types and additional OWASP
risks. Currently, our dataset is limited to a single programming lan-
guage (Python); however, we will extend support to include more
languages, such as Java. Additionally, our dataset lacks specific
metrics to measure its quality. To address this, we are committed to
incorporating metrics in future iterations to provide a more robust
evaluation of dataset quality.

7 CONCLUSION

PyP4LLMSec, consisting of 2142 Python prompts, serves as a valu-
able resource for evaluating the generated code on security aspect.
Covering 15 CWE categories and addressing four OWASP Top
10 2021 Risks, we aim to let the dataset support Al-assisted code
generation research. We provide our dataset on the public GitHub
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repository. In the future, we aim to define the metrics to evaluate
the code generated by the LLMs from security aspects and expand-
ing PyVul4LLMSe to include more CWE and OWASP types, along
with extending support to additional programming languages.
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