
Translation of Low-Resource COBOL to Logically Correct and
Readable Java leveraging High-Resource Java Refinement

Shubham Gandhi
TCS Research

gandhi.shubham@tcs.com

Manasi Patwardhan
TCS Research

manasi.patwardhan@tcs.com

Jyotsana Khatri
TCS Research

jyotsana.khatri@tcs.com

Lovekesh Vig
TCS Research

lovekesh.vig@tcs.com

Raveendra Kumar Medicherla
TCS Research

raveendra.kumar@tcs.com

ABSTRACT
Automated translation of legacy code to modern programming lan-
guages is the need of the hour for modernizing enterprise systems.
This work specifically addresses automated COBOL to Java transla-
tion. Traditional rule-based tools for this perform statement-wise
translation, overlooking possible modularization and refactoring of
the source COBOL code to translate to human-readable target Java
code. Our investigation reveals that state-of-the-art Large Language
Models (LLMs) in the domain of code encounter difficulties with
regard to logical correctness and readability when directly translat-
ing low-resource COBOL code to Java. To address these challenges,
we propose an LLM-based workflow, leveraging temperature sam-
pling and refinement-based strategies, to not only ensure logical
correctness of the translation but also maximize the readability of
the target Java code. We exploit the fact that, due to their exten-
sive exposure to human-written Java codes during pre-training,
the LLMs are more equipped with profound comprehension and
capability for refining translated Java codes than COBOL to Java
translation. With a dataset sourced from CodeNet, we perform se-
quential refinement of the translated high-resource Java code with
execution-guided logic feedback followed by LLM-based readability
feedback. We demonstrate that this yields better performance in
terms of logical correctness (81.99% execution accuracy) and read-
ability (0.610 score), than LLM based translation with test cases
and readability guidance (60.25% and 0.539) or refinement of the
translation task itself (77.95% and 0.572).

CCS CONCEPTS
• Computing methodologies → Machine translation; Neural net-
works; • Software and its engineering → Software evolution;
Maintaining software.

KEYWORDS
Code Translation, Low Resource Programming Languages, Large
Language Models, Code Readability, Self-Refinement

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LLM4Code ’24, April 20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0579-3/24/04
https://doi.org/10.1145/3643795.3648388

ACM Reference Format:
Shubham Gandhi, Manasi Patwardhan, Jyotsana Khatri, Lovekesh Vig,
and Raveendra Kumar Medicherla. 2024. Translation of Low-Resource
COBOL to Logically Correct and Readable Java leveraging High-Resource
Java Refinement. In 2024 International Workshop on Large Language Models
for Code (LLM4Code ’24), April 20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3643795.3648388

1 INTRODUCTION
As digital landscapes evolve, efficiently modernizing legacy codes
becomes necessary. Manual efforts demand expertise in both legacy
and modern languages. Hence, there is a need for automated legacy
to modern language translation solutions for correct, efficient and
scalable navigation of legacy systems. In this work, we focus on
translating COBOL code to Java. There has been extensive work
done on code translation with LLMs for high-resource languages
such as Java, Python, etc [4, 7, 9, 14, 24, 27, 28]. Low resource
languages such as COBOL do not get much exposure during pre-
training, as we subsequently observe that direct COBOL to Java
translation (no additional guidance) results, in terms of execution
accuracy (𝐸𝐴) by state-of-the-art code LLMs such as ChatGPT1 and
WizardCoder2 [19], are quite poor (19.57% and 8.70%, respectively),
yielding logically incorrect Java codes as showcased in Table 1. In
addition to the COBOL’s low-resource setting, the lower perfor-
mance is due to differences in paradigms and syntax. COBOL’s
verbose English-like syntax, contrasting with Java’s concise C++-
like syntax, presents a challenge in mapping COBOL statements to
abstract high-level Java constructs. Adapting COBOL’s procedural
and imperative paradigm to Java’s object-oriented one requires
intricate restructuring for more modular and reusable Java code. A
COBOL code snippet can be mapped to a Java library or function,
requiring refactoring. As illustrated in Table 1, the direct LLM-
based translated Java code has a flatter (non-modularized) structure
with no function calls (readinput, calculateAnswer, calculateSum)
and refactored (abstracted) code (input.split()). More examples are
available in Github page3 Section C.

Although there exist syntax-directed tools for this task, these
are rule-based translations. A program is represented as an AST
(Abstract Syntax Tree) and translated to target language using hand-
written rules [21]. One such tool for COBOL to Java translation is

1gpt-3.5-turbo-0613 API endpoint https://platform.openai.com/docs/models/gpt-3-5
2Quantized model https://huggingface.co/TheBloke/WizardCoder-15B-1.0-GPTQ
3https://anonymous.4open.science/r/CobolToJavaCodeTranslation-66A3/
CodeTranslation_LLM4Code_Appendix.pdf

LLM4Code ’24, April 20, 2024, Lisbon, Portugal Gandhi, et al.

Table 1: Example Java code generated by syntax-directed approach (Complete code in Github Page); LLM based direct transla-
tion; our workflow, Incorrect vs. Correct Logic; Non-Modularized vs. Modularized vs. Over-modularized; Non-Abstracted vs.
Abstracted code. Problem: There are 999 towers of height 1, (1+2), (1+2+..999), at intervals of 1m. a meters for tower 1 and b
meters for tower 999 are not covered with snow. Find total snow, assuming atleast 1m deep snow between two adjacent towers.

Source COBOL code Syntax-directed approach Direct LLM-based Translation Our Workflow

.
ACCEPT INP .
PERFORM ab l en TIMES

PERFORM VARYING j FROM cur BY 1
UNTIL INP (j : 1) = SPACE

END−PERFORM

COMPUTE l e n = j − cur
MOVE INP (cur : l en) TO ab11 (i)
COMPUTE cur = j + 1
ADD 1 TO i

END−PERFORM .

COMPUTE d iv = ab11 (2) − ab11 (1) .
MOVE 0 TO s .
MOVE 1 TO i .

PERFORM d iv TIMES
ADD i TO s
ADD 1 TO i

END−PERFORM .

COMPUTE t = s − ab11 (2) .
MOVE t TO ans .
DISPLAY ans .
STOP RUN .

.
public c l a s s Abc_099_b extends Program {

public int ge tAb len () {
return super . g e t D i s p l a y I n t

(0 , 2 , fa l se , fa l se , f a l s e) ;
}
public S t r i n g ge tAb l enAsS t r i ng () {

return super . t o S t r i n g (0 , 2) ;
}
public void s e tAb l en (in t v a l) {

super . s e t D i s p l a y I n t
(0 , 2 , va l , fa l se , fa l se , f a l s e) ;

}
.
public s t a t i c void main (S t r i n g [] a r g s) {

processCmdLineArgs (a r g s) ;
Abc_099_b i n s t a n c e _ = new Abc_099_b () ;
i n s t a n c e _ . e x e cu t e (null) ;
System . e x i t (i n s t a n c e . ge tRe turnCode ()) ;

}
public void exe cu t e (ProgramEnv __env) {

i n i t i a l i z e (th i s) ;
doCobo lGo toS t a r t () ;

}
.
Paragraph main=new Paragraph (th i s) {

. }
public void i n i t i a l i z e (Program p) {

. }
}

.
public c l a s s ABC_099_B {

public s t a t i c void main
(S t r i n g [] a r g s) {

.
in t cur = 1 ;
S t r i n g INP = scanner . n ex tL ine () ;
in t i = 1 ;
. . .
for (in t k = 0 ; k < ab l en ; k++) {

j = cur ;
while (INP . charAt (j −1) != ' ') {

j ++ ;
}
l e n = j − cur ;
ab11 [i] = I n t e g e r . p a r s e I n t (INP .

s u b s t r i n g (cur −1 , cur −1+ l en)) ;
cur = j + 1 ;
i ++ ;

}
d i v = ab11 [1] − ab11 [0] ;
. . .
for (in t k = 0 ; k < d iv ; k++) {

s += i ;
i ++ ;

}
t = s − ab11 [1] ;
.

}
}

.
public c l a s s ABC_099_B {

public s t a t i c void main
(S t r i n g [] a r g s) {

.
in t [] ab = r e ad I npu t (s canne r) ;
long ans = c a l cu l a t eAnswe r (ab) ;
.

}

pr ivate s t a t i c int [] r e a d I npu t
(Scanner s canner) {
.
S t r i n g [] p a r t s = i npu t . s p l i t (" ") ;
ab [0] = I n t e g e r . p a r s e I n t (p a r t s [0]) ;
ab [1] = I n t e g e r . p a r s e I n t (p a r t s [1]) ;
return ab ;

}

pr ivate s t a t i c long c a l c u l a t eAnswe r
(in t [] ab) {
.
long d iv = b − a ;
long s = c a l c u l a t e Sum (d i v) ;
long t = s − b ;
return t ;

}

pr ivate s t a t i c long c a l cu l a t e Sum
(long n) { }

}

opencobol2java4. Unlike LLMs, though, these tools produce logi-
cally correct Java programs (no compilation or execution errors),
they tend to produce statement-wise translations as illustrated in
Table 1 (complete code is on Github page). This does not produce
optimally modularized Java code with semantically meaningful
code segments, which are required for maintainability and com-
prehension. Moreover, such tools require tedious maintenance of
translation rules and translators for each of the several dialects
of COBOL leading to project delays. To address these issues, for
COBOL to Java translation, we focus on both aspects logical cor-
rectness and human readability of the target Java code. We propose
an LLM-based workflow (Figure 1) that leverages the following: (i)
temperature sampling [11] and code refinement [20], which have
proven to be beneficial for other code related tasks, viz. Code Gen-
eration [6, 7, 36, 42], Repair [38–40], Optimization [20], Software
Testing [35], etc, (ii) the high resource nature of the target language,
Java, for refinement and (iii) availability of I/O Test Cases.

Empirical analysis with two best-performing code LLMs (Chat-
GPT and WizardCoder) shows that our best-performing workflow
achieves 86.34% execution accuracy and 0.646 readability score on
CodeNet, validating the following claims: (i) Temperature sampling
aids translation to get better Java code in terms of logical correct-
ness and readability. (ii) Aspect (logical correctness and readability)
specific refinements of translated Java code yield better code than
trying to ensure logical correctness and readability as a part of
COBOL to Java translation task. (iii) Existing LLM-based trans-
lation approach by Pan et al. [24], targeting only high-resource
programming languages, refines the target code in the context of
4https://opencobol2java.sourceforge.net/

the source code. In contrast, Java being high-resource, we claim that
refinement of translated Java code without having COBOL code in
the context (refinement of translated Java code) yields better per-
formance, as compared to refinement of target Java code with the
COBOL code in the context (refinement of translation task), where
low-resource COBOL acts as a distractor for refinement. (iv) Aspect
(logical correctness and readability) specific sequential refinements
lead to better Java code than combined refinement for both aspects.

2 APPROACH
Our approach consists of a workflow using a base LLM, consisting of
(i) Translation (TM) (ii) Logic Refinement (LRM), and (iii) Readability
Refinement (RRM) Modules (aspect-specific refinements).

2.1 Translation Module (TM)
There are four components which create distinct configurations
of prompts for TM - (i) 𝐵𝐴𝑆𝐸 (ii) 𝐼/𝑂 (iii) 𝐼𝑁𝑆 and (iv) 𝐼𝑁𝑆𝑑𝑒𝑓 .
The primary objective of 𝐵𝐴𝑆𝐸 is to evaluate the LLM’s inherent
ability to perform direct translation. For this, we keep the prompt
minimal without additional aids. With 𝐼/𝑂 , we enhance TM by in-
corporating sample I/O pairs of Test Cases in the prompt, which
can aid TM, resulting in Java code that may accurately replicate
the I/O behavior of the COBOL code (giving expected output for
given input as well as adhering to I/O format). 𝐼𝑁𝑆 provides basic
instructions to produce logically correct and readable Java code ,
whereas, 𝐼𝑁𝑆𝑑𝑒𝑓 consists of carefully crafted guidelines to preserve
the logical correctness and readability of the translated code. Since
readability can often be ambiguous, certain definitions related to
readability criteria applicable for code translation are included in

Unleashing Large Language Models for Code Translation in Low-Resource Programming Languages LLM4Code ’24, April 20, 2024, Lisbon, Portugal

Figure 1: Our Approach: LLM-based aspect-specific sequential refinement workflow defined in Section 2.4

this component. These criteria are: Overall Readability [34], Ab-
straction, Modularization, Dead (Unnecessary) code, Logical seg-
mentation, Complexity [3], Comments [34], Naming convention
[34], Testability and Alignment [10]. Some of these criteria, such as
abstraction, modularization, logical segmentation and unnecessary
code, are specifically designed to address readability concerns of
COBOL-to-Java translation, whereas others are sourced from prior
literature. Attaching distinct combinations of the above-explained
components to 𝐵𝐴𝑆𝐸 leads us to the following six prompt configu-
rations for TM: (i) TM𝐵𝐴𝑆𝐸 (Github page prompt 1) (ii) TM𝐵𝐴𝑆𝐸+𝐼/𝑂
(Github page prompt 2) (iii) TM𝐵𝐴𝑆𝐸+𝐼𝑁𝑆 (Github page prompt 3)
(iv) TM𝐵𝐴𝑆𝐸+𝐼𝑁𝑆𝑑𝑒𝑓 (Github page prompt 4) (v) TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆

(Github page prompt 5) and (vi) TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓
. The input to

TM is COBOL code, and output is the translated Java code with a se-
lected prompt configuration. As an examplewe illustrate the prompt
for TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

configuration in Prompt 1. Prompts for rest
of the configurations are illustrated on the Github Page.

2.2 Logic Refinement Module (LRM)
The LRM aims to ensure logical correctness of the resultant trans-
lated Java code. On the similar lines of Huang et al. [12], we do not
rely on the intrinsic capabilities of LLMs for the refinement, but
instead use external feedback for the same. We compile and execute
the Java code generated by the prior module. If the resultant Java
code compiles and generates expected output for all the test cases,
we bypass LRM for that sample. In case of failure, we gather the
error messages (from compiler or runtime system) and categorize
the errors into four types: (i) Compilation Errors (𝐶𝐸), (ii) Runtime
Errors (𝑅𝐸), (iii) Functional errors (𝐹𝐸) (code executes but does not
provide expected output) and (iv) Non-Termination Errors (𝑁𝑇𝐸),
to generate logic feedback. We consider 𝐶𝐸 to be more severe than
𝑅𝐸 and 𝑁𝑇𝐸, which in turn would be more severe than 𝐹𝐸. If the
logic feedback indicates any of the above errors, we proceed to LRM
using the feedback along with the test cases as part of the refine-
ment prompt (Prompt 2). Note that this prompt does not have the
source COBOL code in the context. The input to LRM is a logically
incorrect Java code with logic feedback, and output is the Java code
repaired by the LLM, currently in a non-iterative setting.

2.3 Readability Refinement Module (RRM)
This module generates LLM-based readability feedback for the
translated Java code and rectifies the same in case of negative feed-
back. To provide feedback for the translated Java code, we do not
rely on the LLM’s inherent understanding of readability and use

the aforementioned task-specific readability criteria. We include
the definitions of the criteria in the feedback prompt (Github page
prompt 8) and ensure that the feedback is both detailed (mentions
specific portions of the code along with the understanding of the
corresponding problematic aspects of readability, if any) and com-
prehensive in nature. The LLM leverages the insights gained from
the readability feedback, along with sample I/O, to enhance the
readability of the generated Java code by making it more refactored,
modularized, and aligned with Java coding standards (Prompt 3).
Note that source COBOL code is not in the context.

Prompt 1: TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓
Translation Prompt

1 Translate the following COBOL Code to Java to satisfy

the following sample test cases without hardcoding

inputs while taking the following guidelines into

consideration .{ OUTPUT_FORMAT}

2 SAMPLE TEST CASES: {test_cases}

3 GUIDELINES:

4 The logic of the code should be preserved when

translating from COBOL to Java.

5 The resulting Java code should be readable in nature.

6 {READABILITY_DEFINITIONS}

7 COBOL CODE: {cobol}

Prompt 2: Logic Refinement Prompt
1 Refine and rewrite the following Java Code based on the

following guidelines and satisfy the following sample

test cases without hardcoding inputs. {OUTPUT_FORMAT}

2 SAMPLE TEST CASES: {test_cases}

3 GUIDELINES: {logic_feedback}

4 JAVA CODE: {java}

Prompt 3: Readability Refinement Prompt
1 {READABILITY_DEFINITIONS }. Can you give suggestions to

improve readability of the following java code based on

abstraction , modularization , unnecessary code , logical

segmentation , complexity , comments , naming convention ,

testability and alignment of the following code. Give

suggestions for each feature separately first. Do not

fix the code , just provide suggestions.

2 JAVA CODE: {java}

3 SAMPLE TEST CASES: {test_cases}

4 GUIDELINES: {readability_feedback}

5 Now fix the code based on the above guidelines .{

OUTPUT_FORMAT}

LLM4Code ’24, April 20, 2024, Lisbon, Portugal Gandhi, et al.

2.4 LLM-based Workflow
Figure 1 illustrates our workflow using the above defined mod-
ules in the order: TM, 𝐿𝑅𝑀1, RRM, 𝐿𝑅𝑀2, where 𝐿𝑅𝑀𝑥 is the 𝑥𝑡ℎ
LRM instance. Thus, it performs translation followed by sequential
aspect-specific refinements. For our workflow, we use the best-
performing TM configuration. We feed a COBOL code to TM and
generate K samples of Java code (𝐽𝑎𝑣𝑎𝑇) using temperature sam-
pling. Out of these K samples, the erroneous ones are passed to
𝐿𝑅𝑀1 to rectify the detected errors discussed above. The logically
refined K samples (𝐽𝑎𝑣𝑎𝐿) are again compiled, executed and ranked
based on their logical correctness. The logically correct ones get the
highest rank, followed by the ones with 𝐹𝐸, followed by 𝑅𝐸 or 𝑁𝑇𝐸
followed by 𝐶𝐸. The readability scores (𝑅𝑆) (Explained in section
3.2) are used as tiebreakers. For example, consider that there are
N<=K samples with no errors (logically correct), and if 𝑁 > 1, the
sample from 𝑁 with greatest 𝑅𝑆 gets the highest rank. The Java
code with the highest rank (𝐽𝑎𝑣𝑎𝐿∗) is forwarded to RRM. As logical
correctness gets priority over readability, the Java Code generated
as an output of RRM (𝐽𝑎𝑣𝑎𝐿𝑅) is again checked for logical correct-
ness. If it is logically incorrect and 𝐽𝑎𝑣𝑎𝐿∗ is logically correct, we
stick to 𝐽𝑎𝑣𝑎𝐿∗ as the final output. Otherwise, if both 𝐽𝑎𝑣𝑎𝐿∗ and
𝐽𝑎𝑣𝑎𝐿𝑅 are logically incorrect, we feed 𝐽𝑎𝑣𝑎𝐿𝑅 to 𝐿𝑅𝑀2 to ensure
logical correctness of the resulting Java code (𝐽𝑎𝑣𝑎𝐿𝑅𝐿).

3 EXPERIMENTATION AND RESULTS
3.1 Dataset
We source our dataset from CodeNet [26], which is derived from
code submission platforms AIZU5 and AtCoder6. It has 4053 prob-
lem statements with multiple submissions in 55 programming lan-
guages. To the best of our knowledge, it is the only public dataset
having COBOL samples with test cases. We investigate ChatGPT’s
exposure to CodeNet as a part of pre-training data. We find that
although ChatGPT can generate some statistics for CodeNet, it
cannot complete partially provided problem statements or COBOL/
Java codes in the dataset. This suggests that it might have seen
some web description of CodeNet, but not the actual data in terms
of problem statements and codes. We select the problem statements
that have at the least one accepted COBOL submission and ran-
domly select a submission for each problem, along with provided
I/O test cases, resulting in 322 COBOL code samples. This set is
consistent across all settings in Table 2. We DO NOT treat the Java
submissions for that problem as ground truth, as our metric (dis-
cussed in Section 3.2) is independent of the same. As we work in
a zero-shot setting, we use all the COBOL codes as test samples.
The number of COBOL code lines (ranges from 11-358) serve as
our criterion of code difficulty, with distribution: (i) Very Easy: 73
(ii) Easy: 58 (iii) Medium: 69 (iv) Hard: 57 (v) Extra Hard: 65.

3.2 Metrics
As we aim to produce logically correct and readable Java programs,
we use the following metrics for evaluation.

3.2.1 Execution accuracy (𝐸𝐴). It represents the percentage of
translated Java code samples that execute correctly, i.e. without any
5https://onlinejudge.u-aizu.ac.jp.
6https://atcoder.jp/

errors and yield expected output for all the test cases provided in
the dataset. We use OpenJDK v11.0.20.1 to execute the Java codes.

3.2.2 Traditional Readability Score (𝑅𝑆). We use the approach in
Scalabrino et al. [29] for 𝑅𝑆 computation (Range 0-1). They train a
classifier using logistic regression on code features defined by Buse
and Weimer [5], Dorn [10], Posnett et al. [25] including spatial and
textual features (Section 4.2).

3.2.3 LLM-based readability Score. As 𝑅𝑆 does not consider some
of the criteria important for COBOL-to-Java translation viz. abstrac-
tion, modularization, logical segmentation, and redundancy; we
use ChatGPT (prompt illustrated on the Github page) to evaluate
the resultant Java code for these criteria.

3.3 Large Language Models (LLMs)
We use two base LLMs pre-trained on natural language as well
as code, viz. WizardCoder [19] and OpenAI’s ChatGPT(gpt-3.5-
turbo). Due to computational constraints, we use a 4-bit quantized
version of WizardCoder-15B. For temperature sampling, we use
temperature 0.7 for more diverse output; for refinement modules
we use temperature 0.2 for more deterministic output. We use a
MIG A100 GPU with 20 GiB memory for WizardCoder𝑄 inference.

3.4 Baselines
All Prompts for the baselines are illustrated on the Github page.

3.4.1 Refinement of Translation. This baseline is designed follow-
ing Pan et al. [24], to demonstrate that our workflow (refinement of
translated Java code) results in better Java code than performing re-
finement of translation task, as mentioned in Section 1. Same as our
proposed workflow, for this baseline, we compute the results with
the best performing configuration TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

and K = 5
temperature samples. We perform two variants of refinement mod-
ules, viz. one-step refinement for logical correctness and readability
(TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

→ (𝐿𝑅𝑀 + 𝑅𝑅𝑀)𝑡𝑟𝑎𝑛𝑠) and aspect-specific
sequential refinement (TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

→ 𝐿𝑅𝑀1𝑡𝑟𝑎𝑛𝑠 →
𝑅𝑅𝑀𝑡𝑟𝑎𝑛𝑠 → 𝐿𝑅𝑀2𝑡𝑟𝑎𝑛𝑠). Here 𝑡𝑟𝑎𝑛𝑠 denotes refinement of the
translation task with having COBOL code in the context.

3.4.2 One-Step Refinement of translated Java code. Our workflow
(TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

→ 𝐿𝑅𝑀1𝑗𝑎𝑣𝑎 → 𝑅𝑅𝑀𝑗𝑎𝑣𝑎 → 𝐿𝑅𝑀2𝑗𝑎𝑣𝑎)
uses sequential aspect-specific refinement. To validate that it pro-
duces better Java code (details in Section 3.5.1), we use this base-
line with only single-step refinement of translated Java code for
both logical correctness and readability (TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

→
(𝐿𝑅𝑀 + 𝑅𝑅𝑀) 𝑗𝑎𝑣𝑎). Here 𝑗𝑎𝑣𝑎 denotes refinement of the resultant
java with no COBOL code in the context.

3.4.3 Variations in Temperature Sampling. To demonstrate effec-
tiveness of temperature sampling we execute our workflow with
distinct values of K (1, 5, 13). We also study a variation of the work-
flow where the highest ranking sample is selected to be forwarded
to 𝐿𝑅𝑀1 after TM itself (K = 5 → 1) as opposed to passing all 5
samples (output of TM) to 𝐿𝑅𝑀1 and then ranking and selecting
the best sample (Section 2.4).

Unleashing Large Language Models for Code Translation in Low-Resource Programming Languages LLM4Code ’24, April 20, 2024, Lisbon, Portugal

Table 2: W - WizardCoder𝑄 and C - ChatGPT; K - no. of temperature samples; Bold and Underlined: Overall best for K = 5; Bold:
Best in the block; †- Best sample selected after TM; * - Same number (13) of total inference calls.

Workflow K Exec. Acc. (%) Read. Score (0-1)
W C W C

Baselines

TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓
→ (𝐿𝑅𝑀 + 𝑅𝑅𝑀)𝑡𝑟𝑎𝑛𝑠 5 50.31 76.71 0.643 0.643

TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓
→ 𝐿𝑅𝑀1𝑡𝑟𝑎𝑛𝑠 → 𝑅𝑅𝑀𝑡𝑟𝑎𝑛𝑠 → 𝐿𝑅𝑀2𝑡𝑟𝑎𝑛𝑠 * 5 51.86 77.95 0.601 0.572

TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓
→ (𝐿𝑅𝑀 + 𝑅𝑅𝑀) 𝑗𝑎𝑣𝑎 5 51.86 75.78 0.673 0.663

TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓
→ 𝐿𝑅𝑀1𝑗𝑎𝑣𝑎 → 𝑅𝑅𝑀𝑗𝑎𝑣𝑎 → 𝐿𝑅𝑀2𝑗𝑎𝑣𝑎

1 28.88 70.50 0.569 0.582
5 → 1 † 51.86 77.02 0.606 0.603

Translation
Module
Ablation

TM𝐵𝐴𝑆𝐸 5 19.88 36.96 0.605 0.587
TM𝐵𝐴𝑆𝐸+𝐼𝑁𝑆 5 21.43 45.34 0.408 0.412
TM𝐵𝐴𝑆𝐸+𝐼𝑁𝑆𝑑𝑒𝑓 5 18.94 36.65 0.649 0.262

TM𝐵𝐴𝑆𝐸+𝐼/𝑂
1 22.05 47.83 0.303 0.459
5 41.93 66.77 0.430 0.519

TM𝐵𝐴𝑆𝐸+𝐼/𝑂 * 13 64.29 72.67 0.585 0.624
TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆 5 45.03 63.66 0.600 0.536

TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

1 25.47 44.72 0.525 0.471
5 49.07 60.25 0.614 0.539

TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓
* 13 59.32 68.94 0.624 0.577

TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐶𝑜𝑇 1 9.63 48.45 0.525 0.467
TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓 +𝐶𝑜𝑇 1 17.08 40.06 0.444 0.486

Refinement
Modules
Ablation

TM𝐵𝐴𝑆𝐸+𝐼/𝑂 → 𝐿𝑅𝑀1𝑗𝑎𝑣𝑎 5 50.93 75.47 0.559 0.495
TM𝐵𝐴𝑆𝐸+𝐼/𝑂 → 𝐿𝑅𝑀1𝑗𝑎𝑣𝑎 → 𝑅𝑅𝑀𝑗𝑎𝑣𝑎 5 51.24 77.95 0.603 0.547
TM𝐵𝐴𝑆𝐸+𝐼/𝑂 → 𝐿𝑅𝑀1𝑗𝑎𝑣𝑎 → 𝑅𝑅𝑀𝑗𝑎𝑣𝑎 → 𝐿𝑅𝑀2𝑗𝑎𝑣𝑎* 5 51.24 79.81 0.571 0.547
TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

→ 𝐿𝑅𝑀1𝑗𝑎𝑣𝑎 5 52.80 76.40 0.602 0.569
TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

→ 𝐿𝑅𝑀1𝑗𝑎𝑣𝑎 → 𝑅𝑅𝑀𝑗𝑎𝑣𝑎 5 53.42 78.88 0.645 0.609
TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

→ 𝐿𝑅𝑀1𝑗𝑎𝑣𝑎 → 𝑅𝑅𝑀𝑗𝑎𝑣𝑎 → 𝐿𝑅𝑀2𝑗𝑎𝑣𝑎 (𝑤/𝑜 𝐼/𝑂)* 5 51.24 79.50 0.652 0.594
Proposed TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

→ 𝐿𝑅𝑀1𝑗𝑎𝑣𝑎 → 𝑅𝑅𝑀𝑗𝑎𝑣𝑎 → 𝐿𝑅𝑀2𝑗𝑎𝑣𝑎* 5 53.42 81.99 0.617 0.610

3.4.4 Direct translation of COBOL to logically correct and read-
able Java. We treat one of our ablations, TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

as a
baseline to show our workflow’s superiority over direct translation.

3.5 Results and Discussion
We address key research questions (RQ) based on results in Table 2.

3.5.1 RQ1: Does Aspect-wise Sequential Refinement of translated
Java code better performs than baselines? We observe improvement
in 𝐸𝐴 with our proposed workflow over the following baselines: (i)
both the variants of Refinement of Translation (ii) One-step refine-
ment of translated Java code (iii) Direct translation of COBOL to
logically correct and readable Java without refinement. For base-
lines (i) and (ii), we observe a lower 𝐸𝐴 for samples with higher
code lengths. For some samples, with addition of COBOL code in
the context, the refinement prompt exceeds the token limit of LLMs
(ChatGPT=4096; WizardCoder𝑄=2048). This demonstrates another
advantage of our workflow needing no contextual COBOL code for
refinement. For ChatGPT, we observe substantial improvements
in 𝐸𝐴 over these baselines (>5%), whereas for WizardCoder𝑄 we
observe marginal improvements (∼2%). As opposed to 𝐸𝐴, varia-
tions with one-step refinement baselines have higher 𝑅𝑆 than our
workflow. This is because, as discussed in Section 2.4, our workflow
prioritize logical correctness over readability.

3.5.2 RQ2: Do readability enhancements impact code logic? We
observe that addressing readability with basic (TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆)
and elaborate instructions (TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

) shows improve-
ment in 𝐸𝐴 over 𝐵𝐴𝑆𝐸 + 𝐼/𝑂 for WizardCoder𝑄 but not for Chat-
GPT. Hence, we execute our workflow with both best-performing
configurations of TM (TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

for WizardCoder𝑄 and
TM𝐵𝐴𝑆𝐸+𝐼/𝑂 for ChatGPT). Moreover, RRM not only improves 𝑅𝑆 ,
but also 𝐸𝐴 for both LLMs (TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

→ 𝐿𝑅𝑀1𝑗𝑎𝑣𝑎 →
𝑅𝑅𝑀𝑗𝑎𝑣𝑎 over TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

→ 𝐿𝑅𝑀1𝑗𝑎𝑣𝑎) showcasing pos-
itive effect of readability enhancements over code logic.

3.5.3 RQ3: How does incorporation of Chain of Thought (CoT)
Prompting impact performance? For TM, we include CoT prompting
[16, 37], which has been explored for code generation [11, 13, 18, 36].
We ask the LLMs to generate a high-level plan (CoT) of the COBOL
code prior to generating the corresponding Java translation in
the same prompt (Prompts and example CoT on the Github page).
We also include few-shot examples from a left-out set with man-
ually crafted CoT. We compare CoT-based scores with the best-
performing configurations of TM to check the effect of inclusion of
CoT prompting to these configurations (TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓 +𝐶𝑜𝑇
and TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐶𝑜𝑇) with no temperature sampling (K=1). With
the inclusion of CoT, we see an average decrease in 𝐸𝐴, whereas
only a marginal increase in 𝑅𝑆 , for both the LLMs. This can be
due to the few shot samples causing the prompt to exceed context

LLM4Code ’24, April 20, 2024, Lisbon, Portugal Gandhi, et al.

limit. Given the higher significance placed on 𝐸𝐴, we exclude CoT
variations of TM from our workflow.

3.5.4 RQ4: Does temperature sampling improve EA and RS?. For
both LLMs, higher 𝐸𝐴 and 𝑅𝑆 of our workflow as compared to
the baseline with K=1 , indicate the positive effect of temperature
sampling. Same is indicated by increase in 𝐸𝐴 and 𝑅𝑆 , with in-
crease in temperature samples (K = 13 from 5) for both the LLMs
(Github page Figure 2). Temperature sampling helps WizardCoder𝑄
more than ChatGPT. With the proposed workflow, for a sample,
we perform maximum 13 inference calls to the LLMs (5 for tem-
perature sampling for TM + 5 for LRM1 + 2 for RRM using LLM-
based feedback and 1 for LRM2). We perform temperature sampling
with K=13, i.e. same number of inference calls to that of the work-
flow (Indicated by ∗ in Table 2). For ChatGPT, our workflow with
TM𝐵𝐴𝑆𝐸+𝐼/𝑂+𝐼𝑁𝑆𝑑𝑒𝑓

configuration yields better 𝐸𝐴 and 𝑅𝑆 than
temperature sampling with the same number of inference calls.
However, for WizardCoder𝑄 , the results are reversed.

3.5.5 RQ5: Does a combination of LLMs perform better? With higher
performance of temperature sampling forWizardCoder𝑄 and refine-
ment for ChatGPT, we execute our workflow with Wizard-Coder𝑄
for TM and ChatGPT for all three refinements. This leads to cost
savings in terms of lesser number of API calls to ChatGPT. We find
the value of 𝐾 to be 25, where WizardCoder𝑄 reaches stagnancy
as far as 𝐸𝐴 is concerned. With this workflow, we yield the best
performance of 𝐸𝐴 = 86.34% and 𝑅𝑆 = 0.646.

3.5.6 RQ6: Does inclusion of I/O improve EA and RS?. Inclusion of
I/O of test cases for TM, LRM and RRM consistently yields better
𝐸𝐴 for both LLMs, as intended in Section 2.1. However, it does not
consistently result in an increase in 𝑅𝑆 .

3.6 Qualitative Analysis
3.6.1 Contribution of Modules for Logical Error Correction. Fig-
ure 2 shows the contribution of each module towards logical er-
ror correction (Section 2.2) for ChatGPT (Similar illustration for
WizardCoder𝑄 on Github page Figure 1). With ChatGPT, after 𝑇𝑀
with the best configuration, we observe a higher proportion of 𝐹𝐸
and 𝑅𝐸 than 𝐶𝐸 and 𝑁𝑇𝐸. For WizardCoder𝑄 , the number of 𝐶𝐸
(22.05%) after 𝑇𝑀 is greater than ChatGPT. 𝐿𝑅𝑀1 is highly effec-
tive for ChatGPT and corrects significant erroneous codes (28.26%),
even eliminating all 𝐶𝐸s. We associate this fixing capability with
the detailed error messages being passed iin the logic feedback
and sample I/O pairs. For WizardCoder𝑄 , some errors from all
categories are fixed, but the increase in logically correct samples
(5.60%) is significantly lesser than ChatGPT. For ChatGPT, RRM
fixes some instances of 𝑅𝐸 and 𝐹𝐸 while also converting some of
them to 𝐶𝐸. For WizardCoder𝑄 also, although a few errors are
fixed, this module results in a net transformation of other errors
to 𝐶𝐸. The attempt of the LLMs to make the code more readable
can lead to an overall increase in code size owing to the addition of
comments and modularization. For some samples, this also leads to
the context length limit being exceeded which ultimately can result
in compilation errors for the resultant Java programs. In the future,
we plan to take the severity of error types into consideration when
making the decision of selection of Java code between the output of
RRM (𝐽𝑎𝑣𝑎𝐿𝑅) or the output of 𝐿𝑅𝑀1 (𝐽𝑎𝑣𝑎𝐿∗) (section 2.4). Thus,

if 𝐽𝑎𝑣𝑎𝐿𝑅 results into higher severity errors than 𝐽𝑎𝑣𝑎𝐿∗, we plan
to retain 𝐽𝑎𝑣𝑎𝐿∗ as the output. This would prevent the propagation
of errors from low to higher severity. 𝐿𝑅𝑀2 fixes some instances
of 𝐹𝐸 and 𝑅𝐸 to boost the 𝐸𝐴 for ChatGPT further. However, it is
not as effective for WizardCoder𝑄 , resulting in further transforma-
tion of other errors (R - 1.86%, N - 1.24%, F - 7.14%) to 𝐶𝐸. At the
output of each module, for both the LLMs, we observe that there
is generally a lesser number of 𝑁𝑇𝐸 as compared to other error
types. ChatGPT is better than WizardCoder𝑄 at refinement, given
that it fixes a significant amount and variety of errors through se-
quential refinements. The example demonstrated in Table 1, shows
a sample where 𝑇𝑀 gives Java code that causes 𝑅𝐸. 𝐿𝑅𝑀1 further
improves this to yield Java code that causes only 𝐹𝐸 (Github page
Table 2). Further, RRM completely fixes this code, which provides
the expected outputs for given I/Os.

3.6.2 Bug Analysis. To analyze failure cases, we choose 25 samples,
uniformly distributed across difficulty (Section 3.1). We categorize
bugs in failed Java codes as: (i) S - Syntactic and Semantic differences
between COBOL and Java, (ii) L - Dependency and Logic (missing
imports or incorrect logic replication), (iii) M - Model generation
capability and (iv) D - Data (incorrect data types, input parsing or
output formatting issues). As a single program can have multiple
bugs, there is no direct one-to-one mapping between the type of
bugs and the error types discussed above. Thus, each bug type can
lead to different error types. Table 3a shows the distribution of
the 25 samples over the bug types (including no bugs) analyzed
at the output of each module for ChatGPT (Github page Table 5
for WizardCoder𝑄). One sample may belong to more than one
bug type. ChatGPT is able to fix D bugs after the refinements. but
not WizardCoder𝑄 . One major cause of S bugs is that indices in
COBOL start at 1 as opposed to 0 in Java, leading to buggy Java
where indices are shifted by 1. We observe that 𝐿𝑅𝑀1 is effective
in repairing such bugs for both LLMs. Major L bugs are missing
import statements for libraries like Scanner. For both LLMs, the
refinement modules fix considerable bugs of this type. The specific
error location that is provided as part of logic feedback aids in
pinpointing and resolving bugs of types S and L.We observe M bugs
for both LLMs for the cases where the response exceeds the context
limit or does not adhere to the required format (code enclosed
within <JAVA_CODE_BEGIN> and <JAVA_CODE_END> tags).

Table 3: (a) Distribution of 25 samples over bug types, an-
alyzed module-wise for ChatGPT. D - Data; S - Syntax and
Semantics; L - Logic andDependency;M -Model; C - Logically
Correct; (b) Effect of difficulty: EA (%) and RS for ChatGPT

Bug TM LRM1 RRM LRM2
D 7 4 4 2
S 6 1 1 1
L 8 5 2 1
M 0 0 1 2
C 11 17 19 20

(a) Bugs

Bin EA RS
1 95.89 0.696
2 93.10 0.624
3 84.06 0.649
4 78.95 0.574
5 56.92 0.490
(b) Difficulty

Unleashing Large Language Models for Code Translation in Low-Resource Programming Languages LLM4Code ’24, April 20, 2024, Lisbon, Portugal

Figure 2: Contribution of each module towards correction of logical errors. Illustration for ChatGPT LLM.

Table 4:𝐶𝑀 ,𝑊𝑀 𝐶𝐶 ,𝑊𝐶 - Average Manual and ChatGPT eval-
uation scores for ChatGPT and WizardCoder𝑄 translations.
𝐶𝑜𝐶 ,𝐶𝑜𝑊 - Correlation between ChatGPT scores and manual
annotation for ChatGPT and WizardCoder𝑄 translations

𝐶𝐶 𝐶𝑀 𝑊𝐶 𝑊𝑀 𝐶𝑜𝐶 𝐶𝑜𝑊
Abstraction 3.68 4.8 3.96 4.3 0.36 0.21

Modularization 3.04 4.64 3.18 4.4 0.39 0.43
Logical segmentation 3.32 4.96 3.36 4.76 0.21 0.47

Redundant code 4.06 4.2 4.32 4.12 0.45 0.5

This is observed more for WizardCoder𝑄 , where 𝐿𝑅𝑀2 causes a
drastic increase in M bugs.

3.6.3 Code Difficulty. Table 3b and Github page Table 6 show
that, for both LLMs, 𝐸𝐴 and 𝑅𝑆 decreases with increasing levels of
difficulty (defined in Section 3.1).

3.6.4 Readability. In addition to the 𝑅𝑆 criteria (Section 3.2), we
manually score (scale: 0-5) the resultant Java codes of our proposed
workflow for the above-discussed 25 samples for the missing crite-
ria, viz. abstraction, modularization, unnecessary code and logical
segmentation. The average abstraction scores indicate good per-
formance for capturing abstract codes with both ChatGPT and
WizardCoder𝑄 (Table 4). With ChatGPT, for 24 out of 25 samples,
the resultant Java codes use libraries like 𝑆𝑐𝑎𝑛𝑛𝑒𝑟 for taking input,
𝐴𝑟𝑟𝑎𝑦𝑠 for sorting (functions like 𝐴𝑟𝑟𝑎𝑦𝑠.𝑠𝑜𝑟𝑡 ()) wherever neces-
sary or import 𝑀𝑎𝑡ℎ functions. However, for one sample, it fails
to import 𝑆𝑐𝑎𝑛𝑛𝑒𝑟 , uses hard-coded input and does not convert
the array input and its processing (which has a longer, complex
COBOL code) to abstract Java (example on Github page Table 8).
For WizardCoder𝑄 , the Java codes do not import 𝑆𝑐𝑎𝑛𝑛𝑒𝑟 for 14
out of 25 samples and directly use 𝑆𝑐𝑎𝑛𝑛𝑒𝑟 or use hard-coded input.
For 15 resultant Java codes ChatGPT and WizardCoder𝑄 create
functions optimally, yielding high scores for modularization, but
for remaining samples, there is some scope for modularization. 12
and 17 samples for ChatGPT and WizardCoder𝑄 do not have any
unnecessary code (after eliminating the extra text). For both LLMs,
we observe that the resultant Java codes are well indented, fol-
low good logical segmentation, however, do not follow meaningful
naming conventions but use source code variable names.

We further use a ChatGPT based evaluator to get scores for the
above criteria (Github page prompt 16) for the same set of samples.
The correlation of these scores with manual annotations (Table 4)
for abstraction for WizadCoder𝑄 is lower than ChatGPT. This is
because, for few samples, WizadCoder𝑄 generates extra text ap-
pended to the code (Github page Table 7) confusing the ChatGPT
evaluator. The correlation for modularization is high for both the
models. Lower correlation for logical segmentation is the result
of ChatGPT evaluator scores not reflecting good logical segmenta-
tion of resultant Java codes and suggesting room for improvement
without mentioning explicit reasons. Similarly, ChatGPT evaluator
tends to give a low score for unnecessary code even with an expla-
nation mentioning that no redundant code exists. It also considers
𝑆𝑦𝑠𝑡𝑒𝑚.𝑒𝑥𝑖𝑡 (0) as unnecessary code. Overall, the low correlation
between manual annotation and ChatGPT evaluator scores indi-
cates a scope for improvement in LLM-based evaluation.

4 RELATEDWORK
4.1 Code Translation
Converting codebases from legacy to modern languages is time-
consuming and costly [27]. Most of the traditional rule-based ap-
proaches require knowledge of both source and target languages
to design hand-crafted rules [21].To overcome this, ML models
were proposed to learn the statistical alignments between program-
ming languages [1, 15]. Approaches of Neural Machine Translation
(NMT) are limited by the availability of parallel corpora [2, 8].
Transcoder [27] apply unsupervised NMT for languages with a
small parallel corpora. Lachaux et al. [14] proposed a better pre-
training mechanism specific to programming languages. Roziere
et al. [28] use unit test cases to improve code translation perfor-
mance. Recently, LLMs pre-trained with code such as Codex [7],
and PaLM [9] have been used for code-translation. Athiwaratkun
et al. [4] (MBXP) train their own LLMs and test their zero-shot and
few-shot, monolingual andmultilingual translation capabilities. Pan
et al. [24] compare recent LLMs and code-LLMs for high-resource
languages: starcoder [17], llama2 [32], codegen [22], codegeex [41],
and GPT-4 [23] to show that GPT-4 performs the best. We emu-
late their taxonomy for our error and bug analysis in Section 3.6.
Though there exist some rule-based works on COBOL to Java trans-
lation [31, 33] most of the latest neural and LLM-based approaches

LLM4Code ’24, April 20, 2024, Lisbon, Portugal Gandhi, et al.

are not tested for translation of low-resource legacy to modern
languages, which is challenging as explained in Section 1.

4.2 Code Readability
Code readability is defined as the ease of understanding and main-
taining [34], they evaluate readability based on meaningfulness of
variable and function names, quality of comments, and the read-
ability of algorithmic implementation. Initial works on readability
extract features from code blocks and train a classifier with different
types of features like structural (average number of parenthesis,
identifiers etc.), entropy, and Halstread’s volume [5, 25]. Dorn [10]
defines a more extensive set of features based on four aspects:
visual, spatial, alignment and linguistic. Scalabrino et al. [29] intro-
duce additional textual features based on lexicon analysis. Above
defined features might not be sufficient to estimate the ease of un-
derstanding. In addition, it needs high-level abstractions [30]. In
our approach, we include abstraction and modularization aspects,
which are very specific to and essential for translation from legacy
to modern languages. Madaan et al. [20] propose a self-refinement
framework with readability-specific feedback generated using the
same LLM to improve code readability. As opposed to this, in our ap-
proach we explicitly specify translation specific readability criteria
for more comprehensive feedback and refinement.

5 CONCLUSION
We propose an LLM-based workflow for automation of COBOL to
Java translation. The workflow not only ensures the logical cor-
rectness of translated Java programs but also ensures readability.
It exploits Java’s high-resource nature, and performs refinement
over translated Java code with compiler, execution and LLM-based
feedback for logic and readability, without having the low-resource
COBOL code in the context. Using a dataset derived from CodeNet,
we empirically demonstrate the positive effect of introducing I/O
test pairs, temperature sampling, and sequential logic and read-
ability refinements of the translated Java, consistently across two
distinct LLMs, viz. ChatGPT and WizardCoder𝑄 . We observe com-
plementary benefits of these LLMs in terms of reducing errors and
fixing bugs with temperature sampling and refinement, leading us
to define a workflow using both the LLMs, which yields the best
execution accuracy of 86.34% for COBOL to Java translation with
readability score of 0.646. In future we plan to develop a hybrid so-
lution combining the positive effects of syntax-based tools (logical
correctness) and LLMs (better readability) for better performance.

REFERENCES
[1] Karan Aggarwal et al. 2015. Using machine translation for converting python 2 to

python 3 code. Technical Report. PeerJ PrePrints.
[2] Wasi Uddin Ahmad et al. 2023. Summarize and Generate to Back-translate:

Unsupervised Translation of Programming Languages. arXiv:2205.11116 [cs.CL]
[3] Naser Al Madi. 2022. How readable is model-generated code? examining readabil-

ity and visual inspection of github copilot. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1–5.

[4] Ben Athiwaratkun et al. 2022. Multi-lingual Evaluation of Code Generation
Models. In The Eleventh International Conference on Learning Representations.

[5] Raymond PL Buse and Westley R Weimer. 2009. Learning a metric for code
readability. IEEE Transactions on software engineering 36, 4 (2009), 546–558.

[6] Angelica Chen et al. 2023. Improving Code Generation by Training with Natural
Language Feedback. arXiv:2303.16749 [cs.SE]

[7] Mark Chen et al. 2021. Evaluating Large Language Models Trained on Code.
arXiv e-prints (2021), arXiv–2107.

[8] Xinyun Chen et al. 2018. Tree-to-tree neural networks for program translation.
Advances in neural information processing systems 31 (2018).

[9] Aakanksha Chowdhery et al. 2022. PaLM: Scaling Language Modeling with
Pathways. arXiv:2204.02311 [cs.CL]

[10] Jonathan Dorn. 2012. A general software readability model. (2012).
[11] Jessica Ficler and Yoav Goldberg. 2017. Controlling Linguistic Style Aspects in

Neural Language Generation. arXiv:1707.02633 [cs.CL]
[12] Jie Huang et al. 2023. Large Language Models Cannot Self-Correct Reasoning

Yet. (2023). arXiv:2310.01798 [cs.CL]
[13] Xue Jiang et al. 2023. Self-planning Code Generation with Large Language Model.

arXiv e-prints (2023), arXiv–2303.
[14] Marie-Anne Lachaux et al. 2021. DOBF: A deobfuscation pre-training objective

for programming languages. Advances in Neural Information Processing Systems
34 (2021), 14967–14979.

[15] Guillaume Lample et al. 2018. Phrase-Based & Neural Unsupervised Machine
Translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. 5039–5049.

[16] Jia Li et al. 2023. Structured Chain-of-Thought Prompting for Code Generation.
arXiv:2305.06599 [cs.SE]

[17] Raymond Li et al. 2023. StarCoder: may the source be with you!
arXiv:2305.06161 [cs.CL]

[18] Xiping Liu and Zhao Tan. 2023. Divide and Prompt: Chain of Thought Prompting
for Text-to-SQL. arXiv:2304.11556 [cs.CL]

[19] Ziyang Luo et al. 2023. WizardCoder: Empowering Code Large Language Models
with Evol-Instruct. arXiv:2306.08568 [cs.CL]

[20] Aman Madaan et al. 2023. Self-refine: Iterative refinement with self-feedback.
arXiv preprint arXiv:2303.17651 (2023).

[21] Aniketh Malyala et al. 2023. On ML-Based Program Translation: Perils and
Promises. arXiv preprint arXiv:2302.10812 (2023).

[22] Erik Nijkamp et al. 2023. CodeGen: An Open Large Language Model for Code
with Multi-Turn Program Synthesis. arXiv:2203.13474 [cs.LG]

[23] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[24] Rangeet Pan et al. 2023. Understanding the Effectiveness of Large Language

Models in Code Translation. arXiv e-prints (2023), arXiv–2308.
[25] Daryl Posnett et al. 2011. A simpler model of software readability. In Proceedings

of the 8th working conference on mining software repositories. 73–82.
[26] Ruchir Puri et al. 2021. CodeNet: A Large-Scale AI for Code Dataset for Learning

a Diversity of Coding Tasks. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2).

[27] Baptiste Roziere et al. 2020. Unsupervised translation of programming languages.
Advances in Neural Information Processing Systems 33 (2020), 20601–20611.

[28] Baptiste Roziere et al. 2021. Leveraging automated unit tests for unsupervised
code translation. arXiv preprint arXiv:2110.06773 (2021).

[29] Simone Scalabrino et al. 2018. A comprehensive model for code readability.
Journal of Software: Evolution and Process 30, 6 (2018), e1958.

[30] Simone Scalabrino et al. 2019. Automatically assessing code understandability.
IEEE Transactions on Software Engineering 47, 3 (2019), 595–613.

[31] Harry M Sneed and Katalin Erdoes. 2013. Migrating AS400-COBOL to Java: a
report from the field. In 2013 17th European Conference on Software Maintenance
and Reengineering. IEEE, 231–240.

[32] Hugo Touvron et al. 2023. Llama 2: Open Foundation and Fine-Tuned Chat
Models. arXiv:2307.09288 [cs.CL]

[33] Aditya Trivedi and Ugrasen Suman. 2013. Design of a Reverse Engineering Model
(A Case Study of COBOL to Java Migration). International Journal of Computer
Applications 79, 5 (2013).

[34] Sergey Troshin and Nadezhda Chirkova. 2022. Probing Pretrained Models of
Source Codes. In Proceedings of the Fifth BlackboxNLP Workshop on Analyzing
and Interpreting Neural Networks for NLP. 371–383.

[35] Junjie Wang et al. 2023. Software Testing with Large Language Model: Survey,
Landscape, and Vision. arXiv:2307.07221 [cs.SE]

[36] Xuezhi Wang et al. 2023. Self-Consistency Improves Chain of Thought Reasoning
in Language Models. (2023). arXiv:2203.11171 [cs.CL]

[37] Jason Wei et al. 2023. Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models. arXiv:2201.11903 [cs.CL]

[38] Chunqiu Steven Xia et al. 2022. Practical Program Repair in the Era of Large
Pre-trained Language Models. arXiv:2210.14179 [cs.SE]

[39] Chunqiu Steven Xia and Lingming Zhang. 2023. Conversational Automated
Program Repair. arXiv:2301.13246 [cs.SE]

[40] Michihiro Yasunaga and Percy Liang. 2020. Graph-based, Self-Supervised Pro-
gram Repair from Diagnostic Feedback. arXiv:2005.10636 [cs.SE]

[41] Qinkai Zheng et al. 2023. CodeGeeX: A Pre-Trained Model for Code Generation
with Multilingual Evaluations on HumanEval-X. arXiv:2303.17568 [cs.LG]

[42] Yuqi Zhu et al. 2023. Improving Code Generation by Dynamic Temperature
Sampling. arXiv preprint arXiv:2309.02772 (2023).

Received 8 December 2023; accepted 15 January 2024

