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ABSTRACT
State-of-the-art large language models (LLMs) have demonstrated
an extraordinary ability to write computer code. This ability can be
quite beneficial when integrated into an IDE to assist a programmer
with basic coding. On the other hand, it may be misused by com-
puter science students for cheating on coding tests or homework
assignments. At present, knowledge about the exact capabilities
and limitations of state-of-the-art LLMs is still inadequate. Further-
more, their capabilities have been changing quickly with each new
release. In this paper, we present a dataset of 559 programming
exercises in 10 programming languages collected from a system for
evaluating coding assignments at our university. We have experi-
mented with four well-known LLMs (GPT-3.5, GPT-4, Codey, Code
Llama) and asked them to solve these assignments. The evaluation
results are intriguing and provide insights into the strengths and
weaknesses of the models. In particular, GPT-4 (which performed
the best) is currently capable of solving 55% of all our exercises and
achieved an average score of 86% on exercises from the introductory
programming course (using the best of five generated solutions).
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1 INTRODUCTION
Recent breakthroughs in large language models (LLMs) have caused
a wave of excitement that has splashed well beyond the scientific
community. The emergent abilities of LLMs [19] such as language
translation, creative text generation, and solving programming
tasks have raised many questions regarding their limits and capa-
bilities. In this research, we focus on the ability to solve coding

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LLM4Code ’24, April 20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0579-3/24/04
https://doi.org/10.1145/3643795.3648389

tasks, and so we have performed extensive experiments with real
assignments solved by university students.

It is well known that LLMs such as ChatGPT can handle smaller
coding tasks [2, 4]. In fact, AI-powered tools designed to assist pro-
grammers by generating or fixing small portions of code (such as
Copilot [20]) are generally available. Although these tools may sig-
nificantly improve coding efficiency in the hands of an experienced
programmer, their benefits for the learning process in the domain
of computer science are still unclear [3]. On one hand, having a
tireless assistant that is capable of correcting student mistakes in
real time is a tempting prospect. On the other hand, relying blindly
on AI tools may dull the programmer’s wits and may lead to new
types of mistakes since LLMs are not infallible. Furthermore, it is
undesirable if an AI tool can solve the student’s work completely
since it may easily become a tool for cheating.

In this paper, we focus on the empirical evaluation of LLMs from
the perspective of solving coding assignments designed specifically
for education. We attempt to answer the following questions:

(1) Can LLMs solve assignments completely in place of a stu-
dent?

(2) How complex are the assignments that LLMs can solve?
(3) Do currently available LLMs differ greatly in their perfor-

mance on this task?
One significant contribution of our research is that we use a dataset
consisting of real coding exercises assigned to students at our uni-
versity. The exercises were selected from various courses covering
the first seven semesters of instruction. They vary greatly in com-
plexity, are written in 10 different programming languages, and
focus on various aspects of programming, such as coding principles,
algorithms, data structures, and specific technologies.

The paper is organized as follows. Section 2 describes our dataset
of exercises and their evaluation. Section 3 elaborates on the LLMs
and how we use them to solve the exercises. Our experimental
results and their interpretations are summarized in Section 4. Sec-
tion 5 presents related work and Section 6 concludes our paper.

2 DATASET
Our dataset was collected from the ReCodEx system1 deployed at
our university. It is a web application in which teachers may prepare
coding exercises and assign them to students. Each exercise has a
specification (formatted text in Markdown) and optionally some
associated files (e.g. images or template source code). Furthermore,
the teacher provides test cases for evaluating the correctness of
solutions along with time and memory limits for each test.

The students are supposed to follow the exercise specifications
and submit their solutions in the form of source code. ReCodEx
compiles each solution, executes it for each test case, and imposes

1https://github.com/recodex
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the time and memory limits. The produced outputs are compared
with the outputs provided by the teacher to determine whether the
solution is working correctly.

At present, ReCodEx supports 17 programming languages and
is being used in over 30 courses with various types of exercises
ranging from simple basic coding tasks to fairly advanced exercises
in specialized classes (e.g., designing machine learning models in
TensorFlow or writing a custom compiler).

One of the greatest benefits of ReCodEx is quick feedback to
students: simple assignments are evaluated in a matter of seconds.
We exploit this advantage in our work by submitting large numbers
of LLM-generated solutions to ReCodEx, which provides quick and
impartial evaluations.

2.1 Data extraction and filtering
At present, there are nearly 2, 000 exercises stored in ReCodEx.
Unfortunately, the exercises are of varying quality — some have
vague specifications or mistakes in testing data, and some may be
completely or nearly identical to others. We imposed a series of
filtering rules to select only exercises that we considered sufficiently
good for our experiments:

• At least one student solved the exercise (100% correct) in the
past two years, so it is valid and sufficiently up-to-date.

• The specification has at least 150 characters2.
• The specification does not contain hyperlinks to external
materials which are essential for solving the assignment.

Some of our exercises support multiple programming languages.
For simplicity, we decided that each exercise should be solved by
only one programming language in our experiments and we se-
lected the language that was used by the most students in the past
two years (for each exercise).

Many of our exercises have specifications written both in Czech3
and in English. English may be better suited for LLMs since it is the
language on which they are trained the most. On the other hand,
almost all our teachers are native Czechs so the English specifica-
tions may be of lower quality. We decided to choose the longer of
the available specifications for each exercise since it presumably
describes the problem more thoroughly.

2.1.1 Deduplication. Many of our teachers often duplicate exer-
cises, so we put in a considerable effort to reduce the duplicates in
our dataset. We automatically eliminated exercises with identical
specifications. We also manually examined exercises with identical
names, or whose specifications were very similar (measured using
the normalized Levenshtein distance), and eliminated those we
judged to be duplicates. This deduplication process eliminated 113
exercises. We manually eliminated 28 further exercises since their
specifications were found to be incomplete or otherwise unsuitable.

2.2 Basic properties and availability
The final dataset holds 559 individual exercises from 17 distinct
courses spanning 7 semesters of our computer science curriculum
up to the first semester of our master’s program. The distribution

2This threshold was determined by manual examination of the shortest specifications.
3The native language of most of our students.

is not even: 365 exercises are from the first year of study, 177 from
the second year and only 17 from the remaining years.

The dataset covers 10 different programming languages. Most of
the exercises (280) are in Python since we use that language in our
first programming classes. The second most frequent language is C#
(105 exercises), and the third is C/C++ (67). It is worth mentioning
that we have 36 exercises in Prolog and 27 in Haskell; these lan-
guages are unusual in LLM coding evaluation datasets. Finally, we
include 5 C++ exercises from a class about Arduino programming
which are also highly uncommon in evaluation datasets.

The complete list of exercises alongwith amore detailed overview
is available in an associated Git repository4. We have not placed
the exercise specifications into the repository since many of them
should not be publicly available to students (especially exercises
used in exams), and also so that the models cannot use them for
training (since we would like to continue to test with this dataset in
the future). However, we are willing to share them privately under
nondisclosure terms.

3 EXPERIMENTS
We evaluated four LLMs on the exercises in our dataset:

GPT-3.5 [15] is a family of models fromOpenAI, with an initial
release inMarch 2022. The very popular andwell-knownweb
service ChatGPT uses a fine-tuned model from this family.
We specifically tested gpt-3.5-turbo-1106 (“Updated GPT-
3.5 Turbo”), released on November 6, 2023.

GPT-4 [16] is a family of models from OpenAI, with an initial
release in March 2023. The ChatGPT Plus service is based on
a model from this family. We tested gpt-4-1106-preview
(“GPT-4 Turbo”), released on November 6, 2023.

Codey [11] is a family of models from Google, first released in
May 2023. Codey models are built on the large foundation
model PaLM 2 and fine-tuned on a large dataset of permis-
sively licensed source code. We tested the code-bison-32k
model, a preview version that was current when we made
our queries via Google’s API in November 2023.

Code Llama [17] is a family of models from Meta, fine-tuned
from its Llama 2 model on a large dataset of source code and
released in August 2023. Unlike the othermodels above, Code
Llama is openly licensed with weights publicly available.
We used the codellama-34b model, which has 34 billion
parameters.

Table 1 shows some characteristics of these models.
Many of our exercises have descriptions in Czech. We found

that all the models could solve exercises in Czech, and in fact every
model’s average score on exercises in Czech was higher than on
exercises in English. This does not necessarily mean that the models
are as capable of understanding Czech as well as English, since our
Czech exercises may have been easier on average. Nevertheless,
our overall impression was that the choice of language had little
impact on the performance of any of these models.

We were originally unsure whether all these models would be
able to generate code in all of the programming languages of our
exercises. In the end, we found that all models were able to solve at
least one exercise in every language, except that only GPT-3.5 and
4https://github.com/medovina/llm4code-2024-recodex (exercises folder)
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Model Parameters Fine-tuned for code? Context window

gpt-3.5-turbo-1106 175B? No 16K tokens
gpt-4-1106-preview 1.8T? No 128K tokens

code-bison-32k 340B? Yes 32K tokens
codellama-34b 34B Yes 100K tokens

Table 1: Characteristics of the models we evaluated. Question marks indicate values that have not been confirmed by the
models’ authors.

GPT-4 solved any Arduino C++ exercises, and only GPT 4 solved
any Node.JS (JavaScript) exercises.

We queried the GPT and Codey models through OpenAI’s and
Google’s APIs. Facebook does not offer an API for Code Llama. We
chose to query it through Replicate, a Web service that hosts openly
available models.

All these models’ APIs offer a ‘temperature’ parameter for con-
trolling the degree of stochasticity in the output, as well as other
parameters for controlling output qualities such as repetitiveness.
In all our queries we used the default values of these parameters.

3.1 Exercise input format
The exercises in our dataset have descriptions with Markdown
formatting. We decided to submit the exercises to the models in-
cluding this formatting, rather than stripping it and submitting it
in plain text. That is because we found the models were generally
not confused by Markdown formatting and the formatting can be
useful for understanding exercise structure. We observed only one
exercise where Markdown formatting seemed to cause a significant
ambiguity. This exercise contained the following text (which we
have translated from Czech):

The name of the input file is __file.txt.gz__

The double underscores above are Markdown formatting in-
tended to emphasize the filename; however, models sometimes
generated solutions in which the input filename literally included
the underscore characters.

Many of our exercises include attachment files, which may hold
images with diagrams, code templates to be filled in, or sample
data for smoke testing the solution. When submitting exercises
to the models, we ignored attachments with images, because the
models we were evaluating would not be able to understand them
anyway5. We appended the text-based attachments to the exercise
specification, preceding each attachment with a header line such
as “=== data.in ===” indicating its filename.

In some exercises, the attachments are very long, and would in
aggregate exceed the models’ token limits. We decided to submit
these exercises anyway along with as many attachments as we
could reasonably inline in the query. Specifically, we ignored all
attachments that were longer than 8𝐾 characters, as well as any
other attachments that would cause the total size of the query to
exceed 70% of the token limit for the model being queried (reserving
30% for the model’s response).

5OpenAI has recently released a multimodal model gpt-4-version-preview that can
understand images, but we did not test it.

3.2 Output format
Some of the exercises require solutions with multiple source files,
and in some cases, those files must have certain specific names
(such as C++ headers which are included by name). So we needed
to ask the models to produce output in a format that could be un-
ambiguously parsed into a set of named source files. We could have
chosen a structured format such as JSON, in which the filename
and source text could be object attributes. However, we decided to
ask the models to produce a simpler format in which each source
file’s text is preceded by a header line containing the file’s name,
such as “=== SortArray.java ===”. This format avoids issues
with escaping text inside JSON strings or with the JSON structure
itself, which could be potential sources of error.

We asked the models to output only source code, without any ex-
planatory text. We did this because we found they have a tendency
to intersperse code and textual output. Such mixing would prevent
us from finding the source code in the output unless we used heuris-
tics to distinguish code from text, which could be complicated to
implement reliably for all our programming languages.

Based on these decisions, here is the exact prompt that we used
when requesting a solution in Python:

Write a program in Python that solves the
given exercise. Your program should not prompt
the user for input.
Your program will consist of one or more source
files. For each source file, output a filename
in the format "=== filename ===", followed by
the file's contents. After you have output all
source files, output a final line "====".
Do not output any explanatory text.

We used this same English-language prompt even for exercises
with specifications in Czech.

Despite our request not to produce explanatory text, the models
sometimes did so anyway, and in some cases, this output was inter-
spersed with code. For example, GPT-4 often outputs explanatory
text when it judges an exercise to be too difficult to solve com-
pletely and explains that it is only solving a simplified version of
the requested task.

3.3 Few-shot prompting
In addition to describing our desired output format in our prompt,
in each request, we also provided examples of exercises to be solved
along with their intended solutions. This approach is called few-shot
prompting and is intended to increase the quality of the models’ out-
put. Without these examples, the models had a tendency to produce
code with extraneous behaviors such as hard-coding particular test
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cases or producing extra unwanted output. The examples reduced
but did not entirely eliminate such behaviors.

Our example exercises and solutions were specific to each pro-
gramming language from our exercise dataset. For most languages,
we provided two example exercises: one involving reading input
and writing output, and one in which the solution consists only of
functions to be written, with no main function or I/O. The examples
were trivial (e.g., writing a function to add two numbers).

The GPT Chat Completions API allows a request to contain a
series of messages marked as either “user” messages, containing
an instruction to the model, or as “assistant” messages, containing
an expected response. These are explicitly intended for few-shot
prompting, and so we used them for providing our examples to
GPT. The Codey API does not contain this feature, so we invented
custom delimiters ([EXERCISE] and [RESPONSE]) that we used for
few-shot prompts to Codey.

We attempted to encode few-shot prompts for Code Llama using
certain tags (e.g. [INST] and «SYS») mentioned in Meta’s Code
Llama documentation. For this initial experiment, we used the
codellama-34b-instruct model, which is fine-tuned for instruc-
tion input and should support these tags. However, the results were
unsatisfactory: we found that the model would not consistently
produce output in our expected format. So we fell back on using
the codellama-34bmodel with the custom delimiters that we used
for prompting Codey, which worked much better. We made all
our queries to Code Llama through Replicate’s API, which could
conceivably have had some effect on these tags.

3.4 Number of queries
The models we evaluated are stochastic, so we were interested in
gathering multiple solutions for each exercise. We quickly realized
that the GPT models were much stronger than Codey and Code
Llama, and therefore of more interest. In the end, we decided to
gather 5 solutions to each exercise for GPT-3.5 and GPT-4, and only
1 solution to each exercise for Codey and Code Llama.

4 RESULTS
In this section, we present a selected subset of results with our
explanations. All collected data alongwith the scripts and additional
plots are available in an associated Git repository6.

4.1 Metrics
In this section, we define the metrics avg@𝑘 and pass@𝑘 that we
used for evaluating models’ solutions to our exercises.

When ReCodEx evaluates a solution to an exercise, it assigns
it a score, which is the fraction of test cases that passed. (In some
exercises test cases have different weights, which are considered in
computing this fraction.)

The models are stochastic, so for any exercise, they may produce
solutions with various scores. For a single exercise, we define the
avg@𝑘 to be the maximum score earned by 𝑘 independent solutions
from a model for the exercise. The metric avg@𝑘 over a set of
exercises is defined to be the average value of avg@𝑘 over the set.

For GPT models we collected 5 solutions for each exercise. When
computing avg@𝑘 for any exercise when 𝑘 < 5, we computed the
6https://github.com/medovina/llm4code-2024-recodex

average of the maximum scores of all
(5
𝑘

)
possible subsamples of

size 𝑘 . That produces a statistic with lower variance than if we had
chosen only one arbitrary subsample of this size for each exercise.

We say that a solution passes if its score is 1.0, i.e. it passes all
the test cases. For a single exercise, we define the metric pass@𝑘 to
be 1.0 if any of 𝑘 independent solutions from a model have passed,
otherwise 0.0. The metric pass@𝑘 over a set of exercises is defined
to be the average value of pass@𝑘 over the set.

Our definition of pass@𝑘 matches that of other researchers. [7]
The metric pass@𝑘 is commonly used in evaluating the perfor-
mance of LLMs on benchmarks such as HumanEval [7] and MBPP.
Our metric avg@𝑘 is more lenient in that a model can earn points
for a solution that does not pass all the test cases. This reflects the
grading model that most of our teachers use, in which a student
may earn partial credit for such a solution. The statistic avg@𝑘 for
a model represents the score that such a student could expect to
achieve by asking the model for 𝑘 different solutions to an exercise,
then submitting all these solutions to ReCodEx, which will award
the student the highest score of all submitted solutions.

In most of the following results, we consider the average score
avg@𝑘 . In some results, we also present the pass rate pass@𝑘 .

4.2 All exercises
Figure 1 shows the average score and pass rate achieved by each
model over all exercises in our entire dataset. We see that the GPT
models are much stronger than Code Llama and Codex and that
GPT-4 significantly outperforms GPT-3.5. These relative rankings
will be evident throughout the results in the following sections.

0.0 0.2 0.4 0.6 0.8 1.0
avg@1

gpt-4-1106-preview

gpt-3.5-turbo-1106

code-bison-32k

codellama-34b

0.506

0.337

0.220

0.105

Average scores over all exercises

0.0 0.2 0.4 0.6 0.8 1.0
pass@1

gpt-4-1106-preview

gpt-3.5-turbo-1106

code-bison-32k

codellama-34b

0.385

0.229

0.125

0.050

Pass rates over all exercises

Figure 1: The average score (avg@1) and pass rate (pass@1)
achieved by each model over all exercises in the dataset.

Figure 2 shows how the statistics avg@k and pass@k vary with
increasing k for GPT models, i.e. how much performance improves
with repeated sampling. We observe that taking even just two
solutions (instead of one) to each exercise dramatically increases
average scores (e.g., by over 9% for GPT-4).
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Figure 2: Average scores and pass rates of GPT-3.5 and GPT-
4 over all exercises, by the number of samples 𝑘 for each
exercise.
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Figure 3: Average scores by course year. On the x-axis, 1.0 is
the first semester (1st year of BSc program), 1.5 is the second
semester, 2.0 is the first semester of the 2nd year, and so on. 4.0
is the first year of master’s studies. (The graph excludes data
for semesters in year 3, since we have only a few exercises
for those semesters, too few for a meaningful average.)

4.3 Average scores by year
Figure 3 shows each model’s average scores over all courses that are
normally taken by students in a given semester of their bachelor’s
or master’s studies. The graph shows a consistent downward trend.
We also see that GPT-3.5 with 5 samples consistently performs
about as well as GPT-4 with a single sample. Our dataset contains
many more exercises from the earlier semesters of study than from
later semesters (since the assignments in later semesters are more
complex). In fact over half of the exercises in our dataset are from
first-semester courses. For this reason, the average scores over all

0.0 0.2 0.4 0.6 0.8 1.0
Average score

Programming 1

Intro to Algorithms

Programming 2

Computer Systems

Programming 3

Programming in C++

Java
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C# Language and .NET

Non-Proc. Programming

Advanced C++

Data Structures I

Large scale optimization

Average scores by course
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gpt-3.5-turbo-1106
gpt-3.5-turbo-1106 (avg@5)
gpt-4-1106-preview
gpt-4-1106-preview (avg@5)

Figure 4: Average scores by course. Courses offered in a single
semester are grouped together, with first-semester courses at
the top. (This chart excludes some courses with only a small
number of exercises.)

exercises in the previous section are much higher than the average
scores in the median year of study (2.5) that we see here.

4.4 Average scores by course
Figure 4 shows each model’s average score in different courses
that we offer. The minimum required homework score to pass a
class varies among teachers at our university. In our introductory
classes (Programming 1/2/3 and Introduction to Algorithms) many
teachers require a minimum score of 70%. It seems likely that a
student could use GPT-4 to generate a set of homework solutions
that would pass these classes, especially if they query it several
times for each assignment. On the other hand, for most of our
courses in the second year of study and beyond, even the repeated
use of GPT-4 would probably not be enough for a passing score.

4.5 Average scores by programming language
Figure 5 shows each model’s average score for all programming
languages in our exercise set. The performance among program-
ming languages differed greatly. For example, the average scores
in C++ and Haskell are relatively low. However, our assignments
in these languages are in courses in later semesters and may be
inherently more difficult, so this does not necessarily mean that
producing code in these languages is more difficult for the models.

4.6 Lines of code
In this section, we consider the number of lines of code in each
model’s solutions. In counting lines, we excluded blank lines and
single-line comments in all languages. We did not bother to exclude
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Figure 5: Average scores by programming language

0-24 25-49 50-74 75-99 100-124 125-149 150-174 175-199 200-224 225-249 250+
Lines of code

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e 

sc
or

e

Average score by lines of code in solution
codellama-34b
code-bison-32k
gpt-3.5-turbo-1106
gpt-4-1106-preview

Figure 6: Average scores by lines of code. All solutions from
each model are bucketed into groups by number of lines, and
the plot shows the average score for each group.

multi-line comments, though we found that models rarely emit
these, so this probably does not matter too much.

Figure 6 shows the average score of each model’s solutions as a
function of the number of lines in a solution. We observe an overall
downward trend in scores as the number of lines increases. This
trend is especially consistent in solutions with fewer than 150 lines,
for which the data is relatively plentiful.

Figure 7 shows the distribution of the number of lines of code
of each model’s solutions that passed, i.e. earned a score of 1.0.
Most successful programs were short: we see that for all models
at least 75% of solutions were shorter than 50 lines. Neither Code
Llama nor Codey produced any successful solutions of over 100
lines. However, GPT-3.5 generated two successful programs that
were more than 150 lines long, and GPT-4 had several successful
programs over 200 lines.

Figure 8 compares the number of lines in GPT-4’s solutions
and our reference solutions for the same exercises. Each blue x
represents a single exercise where GPT’s solution passed with a
score of 1.0. We can see a positive correlation between the number
of lines in GPT’s and our solutions, though in many cases GPT’s
solution was significantly shorter or longer.

Our reference solutions were written by our teachers, and their
nature varies widely. In some exercises, teachers have submitted
code golf-style solutions in which an entire problem is solved on a

codellama-34b code-bison-32k gpt-3.5-turbo-1106 gpt-4-1106-preview
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Figure 7: The distribution of the number of lines of code
in each model’s solutions that earned a perfect score of 1.0.
In each box plot, the orange line indicates the median and
the box spans the quartiles 𝑄1 and 𝑄3. The whiskers extend
to points lying 1.5 IQR (= interquartile range) from the box.
Outliers are plotted individually.
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Figure 8: Lines of code in GPT-4’s passing solutions plotted
versus lines of code in our teachers’ reference solutions for
the same exercises. The dashed line is the line 𝑥 = 𝑦. The plot
omits four outlier points.

single line. In others, the teachers’ solutions have a lot of object-
oriented scaffolding that is not strictly necessary for solving the
exercise. We chose the smallest of the available reference solutions
for each exercise in an attempt to avoid these verbose solutions.

4.7 Unsuccessful solutions
Although the strongest model GPT-4 produced successful solutions
for an impressive variety of problems, in many cases its solutions
were unsuccessful (did not earn the maximum score of 1.0). In this
section, we take a closer look at GPT-4 solutions that failed.

Figure 9 classifies the outcome of all solutions generated by GPT-
4 for all our exercises, grouped by course. The outcome “no program”
means that GPT did not produce a program that could be evaluated.
Often this was because GPT produced code interspersed with text
explaining that it was unable to solve the problem completely. In
some cases, GPT gave up and did not output any code at all. The
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Figure 9: GPT-4 solution outcomes, grouped by course.
Courses offered in a single semester are grouped together,
with first-semester courses at the top. Any solution that
scored 1.0 has the outcome “passed”, and other solutions are
classified by failure mode. (This chart excludes some courses
with only a small number of exercises.)

“compilation error” means that the solution failed to compile. If it
compiled, but failed on some tests, the failure is classified as “time
or memory limit”, “wrong output” or “runtime error”, indicating
why the majority of test cases failed. If all test cases succeeded,
then the solution was successful and is classified as “passed”.

We see that the reasons why solutions failed varied a lot from
course to course. Our first-semester courses use the dynamically
typed language Python, so there could be no compilation errors
there. In these courses, the most common failure mode was that
the program produced incorrect output. In more advanced courses,
GPT often had trouble producing programs that would compile,
especially in courses using C++. We also see that in more advanced
courses GPT often failed to produce a program. Finally, we see that
in two courses (Advanced C++ and Data Structures, a graduate-level
course) there were no passing solutions at all.

5 RELATEDWORK
One of the most discussed models for code generation is Codex [7,
9, 10, 18], a GPT model fine-tuned on publicly available source
code from GitHub. Codex was also used for the well-known de-
veloper tool Copilot [10, 20], an AI-powered IntelliSense. Various
attempts have been made to create a more elaborate model that
focuses specifically on coding, such as Poly-Coder [21], which tried
incorporating a variety of programming languages into the training,
and AlphaCode [13], which targeted primarily assignments from
coding contests. At present, the most powerful model is considered
to be GPT-4 [5], which also performed the best in our evaluation.

Most LLMs are evaluated on natural language processing (NLP)
problems and there are many datasets in this domain [4]. When
focusing on coding assignments, two datasets appear frequently
in model evaluations: HumanEval [7] from OpenAI and Google’s

Mostly Basic Python Problems (MBPP) [2]. HumanEval was essen-
tial for training Codex [7] and contains 164 original problems in
Python. A revised HumanEvalPlus [14] dataset was created later to
overcome deficiencies in HumanEval’s test cases. MBPP is larger,
with about 1000 problems. Amazon introduced the MBXP bench-
mark [1], a translation of MBPP into many popular programming
languages. Similarly, the MultiPL-E [6] tool attempted to translate
MBPP and HumanEval into 18 different languages to create a more
polyglot dataset. Other datasets focus on specific domains such as
OOP [8], coding contests [13], or data science problems [12].

From the perspective of computer science education, there are
both concerns and opportunities [3] in using AI tools. Even the
early generation of generative models performed quite well on
simple programming tasks [2]. Finnie-Ansley et al. focused on
evaluating the Codex model, comparing its performance against
human students in first (CS1) [9] and second (CS2) [10] introductory
computer science courses. Sarsa et al. [18] used Codex to generate
exercises and code explanations for CS1 and CS2 courses. A more
high-level approach was taken by Cipriano et al. [8], who studied
GPT’s capabilities to design OOP abstractions. They also outlined
guidelines for educators to prevent students from abusing AI for
academic assignments. Most of the aforementioned evaluations
were done using some level of automation, which raises another
question — whether the solutions produced by AI are correct or
whether they are just passing (incomplete) tests [14].

Our approach is unique in several ways. Most notably, we present
hundreds of exercises from a real curriculum that spans over seven
semesters. Furthermore, our selection of languages includes slightly
more exotic ones such as Prolog and Haskell.

6 CONCLUSIONS AND FUTUREWORK
Our objective was to evaluate the performance of major LLMs
in solving a diverse set of programming assignments designed
for students at our university. Let’s return to the three research
questions we posed in the Introduction.

We first asked: (1) Can LLMs solve assignments completely in
place of a student? We found that in many cases LLMs can solve our
students’ assignments completely. In particular, Figure 1 shows that
the strongest model GPT-4 can solve almost 40% of the exercises in
our dataset with a single query per exercise. Taking the best of 5
queries raises this number to over 55%.

Next: (2) Do currently available LLMs differ greatly in their perfor-
mance on this task? We found that the large general models GPT-3.5
and GPT-4 greatly outperformed the smaller models Codey and
Code Llama, which are specialized for code.

Finally: (3) How complex are the assignments that LLMs can solve?
We will focus our discussion on the strongest model GPT-4, which
seems quite capable of solving most of the introductory program-
ming assignments: its average score on our first-semester assign-
ments, taking the best of 5 solutions for each exercise, was 0.86.
However by the fourth semester, GPT-4’s avg@5 score falls below
0.5, and for our master’s-level assignments, it is less than 0.2. This
suggests that as a student passes through our bachelor’s program,
they will progress from a point where GPT can mostly solve their
assignments to a point where it will only be a helpful assistant.
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The most significant limitation we have seen in the models’
ability to solve our assignments is the size of the generated program.
Even GPT-4 can rarely produce a complete successful program of
more than about 150-200 lines, even though its context window
of 128K tokens would theoretically allow producing a program
that is many thousands of lines long. Indeed, when faced with
many of our advanced exercises which would require a solution of
hundreds of lines, GPT-4 insisted on sketching a solution or solving
the problem only partially. Generating long programs seems to be
especially difficult in languages with complex type systems such as
C++ and Haskell. In these languages, GPT-4’s solutions often failed
to compile in our experiments.

Based on these observations, we believe that a teacher who is
concerned about students’ use of GPT-like tools may want to place
more weight on larger programming projects than on programming
exercises such as those in this dataset. Even in the first year of a
computer science program, most students should be able to tackle
projects that involve writing hundreds of lines of code. GPT will
likely be able to assist with writing such projects, but our experi-
ments suggest that it will not be able to write them entirely based
on a single prompt. That means that even a student who uses GPT
(whether the teacher allows that or not) will need to understand
the code that GPT has written at some level of detail to complete
the work. That itself may be a valuable learning experience.

We could perform various further experiments with our dataset.
In particular, we might be able to improve performance by making a
series of LLM queries for each exercise. If the first solution attempt
fails, we could provide the LLM with feedback about compiler
errors or failing test cases, and then let it try to improve its solution.
Furthermore, when an LLM provides only a sketch or a partial
solution to an exercise, we could make a series of followup queries
to ask it to provide more detail. We could even allow an LLM to
debug its own solution by providing a function that it can call to
run its program on any input that it likes. The GPT API includes a
function callback mechanism that could be useful for this purpose.
A combination of these these approaches could allow an LLM to
interact with a program under development in much the same way
as a human programmer. It would be interesting to find out how
much this interactivity could raise scores over our dataset.
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