
Evaluating Fault Localization and Program Repair Capabilities of
Existing Closed-Source General-Purpose LLMs

Shengbei Jiang∗
Beijing Jiaotong University

Beijing, China
21291232@bjtu.edu.cn

Jiabao Zhang∗
Beijing Jiaotong University

Beijing, China
21281296@bjtu.edu.cn

Wei Chen∗
Beijing Jiaotong University

Beijing, China
21281275@bjtu.edu.cn

Bo Wang†
Beijing Jiaotong University

Beijing, China
wangbo_cs@bjtu.edu.cn

Jianyi Zhou
Huawei Cloud Computing
Technologies Co., Ltd.

Beijing, China
zhoujianyi2@huawei.com

Jie M. Zhang
King’s College London

London, United Kingdom
jie.zhang@kcl.ac.uk

ABSTRACT
Automated debugging is an emerging research field that aims to
automatically find and repair bugs. In this field, Fault Localization
(FL) and Automated Program Repair (APR) gain the most research
efforts. Most recently, researchers have adopted pre-trained Large
Language Models (LLMs) to facilitate FL and APR and their results
are promising. However, the LLMs they used either vanished (such
as Codex) or outdated (such as early versions of GPT). In this paper,
we evaluate the performance of recent commercial closed-source
general-purpose LLMs on FL and APR, i.e., ChatGPT 3.5, ERNIE
Bot 3.5, and IFlytek Spark 2.0. We select three popular LLMs and
evaluate them on 120 real-world Java bugs from the benchmark
Defects4J. For FL and APR, we designed three kinds of prompts for
each, considering different kinds of information. The results show
that these LLMs could successfully locate 53.3% and correctly fix
12.5% of these bugs.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Software testing and debugging.

KEYWORDS
Large Language Model, Fault Localization, Program Repair, Soft-
ware Debugging
ACM Reference Format:
Shengbei Jiang, Jiabao Zhang, Wei Chen, Bo Wang, Jianyi Zhou, and Jie
M. Zhang. 2024. Evaluating Fault Localization and Program Repair Ca-
pabilities of Existing Closed-Source General-Purpose LLMs. In Proceed-
ings of The First International Workshop on Large Language Models for

∗These three authors contributed equally to this research.
†The corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
LLM4Code Workshop ’24, Apr 20, 2024, Lisbon, Portugal
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Code (LLM4Code Workshop ’24). ACM, New York, NY, USA, 4 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Bugs are ubiquitous in modern software systems, threatening our
daily lives. However, program debugging is time-consuming and
challenging, consuming more than half of the developers’ program-
ming time [5]. Hence, a large body of research efforts have been
dedicated to automated debugging techniques.

Among these debugging techniques, Fault Localization (FL) tech-
niques andAutomated ProgramRepair (APR) approaches are emerg-
ing fields and gaining traction. FL techniques aim to automatically
localize buggy code elements (e.g., lines or methods) [9–11, 17],
while APR techniques aim to automatically generate patches to fix
buggy programs without human intervention [18–20, 23].

FL and APR techniques have adopted deep-learning models to
facilitate the capture and comprehension of the context of the buggy
code [10, 11, 17, 22], and deep-learning-based approaches have been
recognized as the state of the art. However, their performance is
still limited because their training data only contains buggy code
extracted from development history.

Most recently, with the overwhelming success of Large Lan-
guage Models (LLM), researchers have proposed to harness LLMs
for FL and APR [3, 4, 7, 14, 16]. Currently, with ChatGPT becom-
ing more and more popular, researchers in the field of debugging
predominantly utilize various versions of the ChatGPT models. For
example, Fan et al. employed the latest model of Codex in 2022,
while Xia et al. employed the latest model of ChatGPT in 2023,
(i.e., gpt-3.5-turbo) [16]. However, with the emergence of more and
more general-purpose LLMs, the capabilities of other models in
debugging have yet to be evaluated.

In this paper, we aim to evaluate the capabilities of existing
closed-source general-purpose LLM in FL and APR. More specif-
ically, we performed a preliminary case study on 120 real-world
Java bugs from six projects of the benchmark Defects4J [6], by com-
paring three commercial closed-source LLMs, namely ChatGPT 3.5,
ERNIE Bot 3.5, and IFlytek Spark 2.0. We designed three types of
prompts by emphasizing different kinds of information, including
source code context, failure traces, and test code context. In contrast
to existing work, we have employed several other closed-source

https://orcid.org/0000-0001-7944-9182
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

LLM4Code Workshop ’24, Apr 20, 2024, Lisbon, Portugal Jiang and Zhang, et al.

LLMs apart from ChatGPT and considered transforming the stack
traces of failure traces into prompts.

The evaluation results show that all three LLMs successfully
locate more than half of all bugs (i.e., 64/120) and correctly fix 12.5%
(15/120). ChatGPT 3.5 achieves the best performance and IFlytek
Spark archives the second best. Contrary to our expectation that
providing more information would enhance the performance of
LLMs, surprisingly, the prompts that only code the source code of
the buggy method achieve the best FL performance. The prompts
that copy the buggy statement achieve the best APR performance.

2 STUDY DESIGN
Figure 1 illustrates the overview of our study. Given a bug from the
Defects4J benchmark, we generate prompts by tailoring the prede-
fined prompt template and the bug context information extracted
from code and test failure messages. We designed different prompt
templates for FL and APR, respectively. We send the prompts to
the target LLMs and get their results. Note that if the length of the
prompt exceeds the token limit of the LLM (e.g., ChatGPT 3.5 has a
4096 token limit), we truncate it. Then we manually compare the
results with the developer patches of Defects4J, which are used
as the oracle. Note that despite ChatGPT, few LLMs provide an
API interface, which makes us engage in conversation with these
models through their web pages.

All experiments were conducted on a Legion Y9000P PC, with
16GB memory and an Intel i9-13900H CPU.

2.1 Research Questions
In this study, we aim to investigate the following research questions:

• RQ1: How do different LLMs perform for FL?
• RQ2: How do different LLMs perform for APR?
• RQ3: Do different sources of information help with
localization and repair?

2.2 Chosen Bugs
We directly the popular benchmark Defects4J v1.2.0 [6], which
contains 395 real-world Java bugs from six open-source projects.
Defects4J is considered to be the baseline benchmark in the field of
FL [1, 8, 10, 11, 21] and APR [18–20, 23].

Note that some bugs of Defects4J may cover multiple methods
or even multiple files, resulting in an inability to measure FL and
APR performance in a single conversation with LLMs. So we skip
these bugs and only keep the bugs whose patch only affects a single
method. As a preliminary study, we pick the first 20 bugs of each
project, and thus in total, we perform our study on 120 bugs.

2.3 Chosen Models
We use the following criteria for selecting LLMs in this study.

(1) The LLMs should be available to external users.
(2) The LLMs should support coding missions.
(3) The LLMs should be closed-source.

Currently, research on the performance of LLMs in software engi-
neering tasks mainly focuses on open-source ones (e.g., CodeLlama)
and ChatGPT. However, many novel commercial LLMs are contin-
uously being proposed, and their code capabilities also need to

be evaluated. At last, we select three LLMs, namely ChatGPT 3.5,
ERNIE Bot 3.5, and IFlytek Spark 2.0. All these models are genera-
tive rather than infilling, but the parameter sizes are not officially
released.

2.4 Fault Localization Experiment Settings
2.4.1 Prompt design. In our study, we directly use a zero-shot
fashion single conversation to perform FL. To be more specific, we
employ three types of information, namely source method code
(i.e., src), bug-trigger assertion code (i.e., assert), and stack trace
(i.e., stack). We combine them with different prompt templates as
follows.

• FL Prompt 1: src + "There is a bug in the above code,
please help me locate it."

• FL Prompt 2: src + stack + "There is a bug in the above
code, please help me locate it by considering the stack trace."

• FL Prompt 3: src + stack + assert + "There is a bug in
the above code, please help me locate it by considering the
stack trace information and failure assertion code."

2.4.2 Evaluation metric. As mentioned before, the bugs used in
our study are limited within a single method. Thus we judge the
line returned by LLMs by checking it is in the lines that are affected
by the corresponding developer patch, which is also a common
practice in the FL community. For the bugs that have multiple
hunks, we consider a bug to be successfully located if all the hunks
are reported as buggy.

2.5 Automated-Program Repair Experiment
Settings

2.5.1 Prompt design. In the APR experiment, we also use a zero-
shot fashion single conversation. Different from our FL experiment,
we only use src information. Additionally, to meet the generative
task, we kept the code before the bug and the bug itself for LLM to
fix. In our pilot study, we found that LLMs rarely correctly fix the
bugs without perfect localization, so we give either the line number
of the bug or directly use the buggy statement. We combine them
with different prompt templates as follows, where X is the place-
holder of the line number of the bug and S is the buggy statement
literal.

• APR Prompt 1: src + "There is a bug in line X of the code,
please help me fix it."

• APR Prompt 2: src + "There is a bug in S, please help me
fix it."

• APR Prompt 3: src + "There is a bug in the last statement,
please help me fix it."

2.5.2 Evaluation metric. Following existing APR common practice,
we manually compare patches made by developers. If they match
entirely, we consider them correct. If they don’t match, we further
assesswhether they are semantically equivalent. Note thatmanually
checking the semantic equivalence is a common practice in the
field of APR. If the patches are semantically equal to the developers’
patch, we mark it as correct, otherwise, we mark it as incorrect.

Evaluating Fault Localization and Program Repair Capabilities of Existing Closed-Source General-Purpose LLMs LLM4Code Workshop ’24, Apr 20, 2024, Lisbon, Portugal

Figure 1: An overview of our study

Table 1: The number of successfully localized bugs.

Project ChatGPT 3.5 ERNIE Bot 3.5 IFlytek Spark
Chart 11 8 9
Lang 7 1 0
Math 9 4 10
Time 6 1 3
Mockito 7 6 2
Closure 7 5 1
Total 47 25 25

Figure 2: The intersection of successfully localized bugs of
chosen LLMs.

3 EVALUATION RESULTS
3.1 RQ1: FL Results
We merge all the results of three kinds of prompts, and Table 1
illustrates the FL performance of the LLMs. ChatGPT 3.5, which
achieves the best performance, successfully locates 47 (i.e., about
39%) bugs with a single conversation. Figure 2 shows the intersec-
tion of successfully localized bugs of the three LLMs. In total, the
three LLMs locate 64 out of the 120 bugs (about 53%). We can find
that all three LLMs have a significant number of uniquely localized
bugs, and ChatGPT 3.5 still has the most uniquely located bugs by
locating 25 bugs that other LLMs could not.

Table 2: The number of successfully repaired bugs.

Project ChatGPT 3.5 ERNIE Bot 3.5 IFlytek Spark
Chart 5 3 3
Lang 0 0 1
Math 1 1 0
Time 1 0 1
Mockito 0 1 1
Closure 2 1 2
Total 9 6 8

Figure 3: The intersection of successfully repaired bugs of
chosen LLMs.

3.2 RQ2: APR Results
Following the settings of the FL experiments, we merge all the
repair results of three kinds of prompts. Table 2 shows the results,
indicating that different from the performance of FL, there is no
significant difference in the APR performance. All three LLMs only
successfully fix less than 10% of the 120 bugs, and ChatGPT 3.5
achieves the best. Figure 3 shows the intersection of successfully
fixed bugs of the three LLMs. In total, all three LLMs successfully
fixed 15 out of the 120 bugs (i.e., 12.5%). Different from the Venn
diagram of FL, there is no significant difference concerning the
number of uniquely fixed bugs. In addition, the portion of the bugs
that are fixed by all LLMs is large.

LLM4Code Workshop ’24, Apr 20, 2024, Lisbon, Portugal Jiang and Zhang, et al.

Figure 4: Comparison of different prompts.

3.3 RQ3: Performance of Different Sources of
Information

Figure 4 shows the overall performance of all used prompts in FL
and APR, respectively. We can find that in FL experiments, the FL
Prompt 1 achieves the best performance, though it uses the least
kinds of information. In APR experiments, the APR Prompt 2,
which copies the statement to be fixed in prompts, achieves the
best performance.

4 RELATEDWORK
LLMs have been widely studied in the field of automated debug-
ging. Some LLM-based APR approaches employed open-sourced
LLMs such as CodeT5 [13–15]. While the most LLM-based APR/FL
approaches are built upon ChatGPT 3.5 [2, 12, 16]. Our paper in-
vestigates underutilized LLMs, serving as a complement to the
evaluation of existing LLMs’ capabilities.

5 CONCLUSION AND FUTUREWORK
In this paper, we perform a study to evaluate existing commercial
closed-source LLMs on FL and APR. We respectively designed three
kinds of prompts for the two tasks and performed a study on 120
bugs from Defects4J. The results show that existing LLMs could
locate 53.3% and correctly fix 12.5% of the bugs.

In the future, we plan to first extend our study to all bugs of
Defects4J. Then to reduce the threat of data leak, we will study their
code capabilities on the datasets that are collected after the LLMs’
training phase. In addition, concerning the performance of FL and
APR, we plan to compare closed-source LLMs with open-source
LLMs. At last, we plan to perform prompt engineering to find a
more proper prompt.

ACKNOWLEDGMENTS
We sincerely thank the anonymous reviewers for their valuable
comments on this study. This work is supported by the National
Natural Science Foundation of China under Grant No. 62202040.

REFERENCES
[1] Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the effective-

ness of unified debugging: An extensive study on 16 program repair systems. In

Proceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering. 907–918.

[2] Jialun Cao, Meiziniu Li, Ming Wen, and Shing-chi Cheung. 2023. A study on
prompt design, advantages and limitations of chatgpt for deep learning program
repair. arXiv preprint arXiv:2304.08191 (2023).

[3] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M Zhang. 2023. Large Language Models for Software Engineer-
ing: Survey and Open Problems. arXiv preprint arXiv:2310.03533 (2023).

[4] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated repair of programs from large language models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE,
1469–1481.

[5] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2018. Automatic software
repair: A survey. In Proceedings of the 40th International Conference on Software
Engineering. 1219–1219.

[6] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.

[7] Sungmin Kang, Gabin An, and Shin Yoo. 2023. A Preliminary Evaluation of
LLM-Based Fault Localization. arXiv preprint arXiv:2308.05487 (2023).

[8] Xia Li, Wei Li, Yuqun Zhang, and Lingming Zhang. 2019. Deepfl: Integrating
multiple fault diagnosis dimensions for deep fault localization. In Proceedings of
the 28th ACM SIGSOFT international symposium on software testing and analysis.
169–180.

[9] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,
and Lu Zhang. 2020. Can automated program repair refine fault localization? a
unified debugging approach. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 75–87.

[10] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang, and
Lingming Zhang. 2021. Boosting coverage-based fault localization via graph-
based representation learning. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 664–676.

[11] Xiangxin Meng, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2022.
Improving fault localization and program repair with deep semantic features
and transferred knowledge. In Proceedings of the 44th International Conference on
Software Engineering. 1169–1180.

[12] Yonghao Wu, Zheng Li, Jie M Zhang, Mike Papadakis, Mark Harman, and
Yong Liu. 2023. Large language models in fault localisation. arXiv preprint
arXiv:2308.15276 (2023).

[13] Chunqiu Steven Xia, Yifeng Ding, and Lingming Zhang. 2023. The Plastic Surgery
Hypothesis in the Era of Large Language Models. In Proceedings of the 38th
IEEE/ACM International Conference on Automated Software Engineering.

[14] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In Proceedings of
the 45th International Conference on Software Engineering (ICSE 2023). Association
for Computing Machinery.

[15] Chunqiu Steven Xia and Lingming Zhang. 2022. Less training, more repairing
please: revisiting automated program repair via zero-shot learning. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 959–971.

[16] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Go-
ing: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv preprint
arXiv:2304.00385 (2023).

[17] Huan Xie, Yan Lei, Meng Yan, Yue Yu, Xin Xia, and Xiaoguang Mao. 2022. A
universal data augmentation approach for fault localization. In Proceedings of the
44th International Conference on Software Engineering. 48–60.

[18] Yingfei Xiong and Bo Wang. 2022. L2S: A framework for synthesizing the
most probable program under a specification. ACM Transactions on Software
Engineering and Methodology (TOSEM) 31, 3 (2022), 1–45.

[19] He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. 2022.
Selfapr: Self-supervised program repair with test execution diagnostics. In Pro-
ceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–13.

[20] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural program repair
with execution-based backpropagation. In Proceedings of the 44th International
Conference on Software Engineering. 1506–1518.

[21] Muhan Zeng, Yiqian Wu, Zhentao Ye, Yingfei Xiong, Xin Zhang, and Lu Zhang.
2022. Fault localization via efficient probabilistic modeling of program semantics.
In Proceedings of the 44th International Conference on Software Engineering. 958–
969.

[22] Quanjun Zhang, Chunrong Fang, Yuxiang Ma, Weisong Sun, and Zhenyu Chen.
2023. A Survey of Learning-Based Automated Program Repair. ACM Transactions
on Software Engineering and Methodology (2023).

[23] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A syntax-guided edit decoder for neural program repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 341–353.

	Abstract
	1 Introduction
	2 Study Design
	2.1 Research Questions
	2.2 Chosen Bugs
	2.3 Chosen Models
	2.4 Fault Localization Experiment Settings
	2.5 Automated-Program Repair Experiment Settings

	3 Evaluation Results
	3.1 RQ1: FL Results
	3.2 RQ2: APR Results
	3.3 RQ3: Performance of Different Sources of Information

	4 Related Work
	5 Conclusion and Future Work
	Acknowledgments
	References

