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ABSTRACT
MoonBit, a new general-purpose programming language designed

for cloud and edge computing, was initiated in late 2022, coinciding

with the announcement of ChatGPT. Language models like GPT, ca-

pable of producing practical programs, are revolutionizing the way

we write programs and interact with computers. However, signifi-

cant challenges persist, such as the models’ inability to understand

the global context of a whole project with its dependencies, the

need for human verification and correction of generated code, and

the lack of assurance in meeting basic requirements like syntactic

correctness.

In this paper, we explore the design of the MoonBit language

highlighting its AI integration, emphasizing the synergy between

traditional code intelligence and large language model capabilities.

We also introduce a real-time, semantics-based sampler to guide the

inference process of language models. This approach ensures the

generated programs are both syntactically correct and free from

obvious semantic flaws, such as type errors. Crucially, this has

been achieved with minimal impact on overall performance. Our

evaluation demonstrates a notable improvement in code quality,

achieved without sacrificing the models’ responsiveness.

CCS CONCEPTS
• Software and its engineering→ Automatic programming.
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1 INTRODUCTION
MoonBit is a general-purpose programming language with its de-

velopment platform for cloud and edge computing [13]. It compiles

to WebAssembly, and aims to be fast, compact and user-friendly. For
a modern programming language to be user-friendly, its integration

with AI-powered assistants is indispensable.

In the realm of code intelligence, the development of Large Lan-

guage Models (LLMs) stands as a significant milestone, marking a

new era in the seamless fusion of contemporary programming lan-

guages and AI-assisted technologies. LLMs have shown remarkable

capabilities in code understanding and code generation tasks. Many

code assistants powered by LLMs, such as GitHub Copilot
1
(which

is powered by Codex [4]), have been widely used by programmers

to improve their coding experience.

Despite the advanced capabilities of LLMs, they still exhibit

several weaknesses. One of the primary limitations is their consid-

erable operational costs, making their deployment an expensive

endeavor for many organizations. Furthermore, LLMs occasion-

ally yield inaccurate or misleading responses, necessitating manual

review and correction to ensure reliability. Even worse, the inte-

gration of LLMs with emerging programming languages presents a

significant challenge, a phenomenon particularly pronounced in

the context of low-resource programming languages [3]. This is

because LLMs tend to inaccurately blend syntax and features from

various languages in code generation for these languages [1].

In this paper, we use MoonBit as a case study to explore ap-

proaches to integrating LLMs with emerging programming lan-

guages. The design of MoonBit’s syntax and frontend is specifically

engineered to enhance the efficiency of LLMs, aiming to reduce both

response latency and operation costs. On the one hand, MoonBit’s

code features a flat and minimally nested structure. This enhances

the efficiency of key-value caching, which is a key mechanism to

accelerate inference by storing previous model states to circum-

vent redundant computations [8]. On the other, the type definitions

1
https://github.com/features/copilot
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and function signatures in MoonBit are explicitly present at the

toplevel, thereby allowing a more flexible retrieval-based prompt
augmentation [10].

Additionally, we have developed a semantics-based sampler that

works closely with static program analyzers. This approach com-

bines the conventional code intelligence with the power of LLMs to

eliminate syntactic and semantic errors, significantly improving the

accuracy of code completion. Meanwhile, the system is designed for

incremental and real-time updates, where adding new knowledge

and revising prompts does not require re-evaluating existing ones.

This design ensures that the sampler keeps pace with the code

generation process of LLMs, effectively avoiding any slowdowns.

In this paper, we make the following contributions:

• We present the design of MoonBit with an emphasis on

features that improve the efficiency of the key-value cache

(§2.1), and the flexibility of prompt augmentation (§2.2).

• We design a semantics-based language sampler that inte-

grates the strengths of static analyzers and LLMs to increase

the accuracy of generated code (§3).

In the following part of this paper, we first discuss in more

details the design of MoonBit (§2), and the implementation of the

semantics-based sampler (§3). We then evaluate its performance

on some example programs and demonstrate that it meets the

expectation above (§3.4). Finally, we discuss related work in §4, and

possible future work in §5.

2 AI-DRIVEN LANGUAGE DESIGN
MoonBit is designed with an emphasis on clarity and simplicity.

It particularly emphasizes a clear distinction between toplevel and
local definitions with mandatory type signatures for defitions at the

toplevel. MoonBit also adopts structural interface implementation,
where a type implements an interface by implementing its meth-

ods, thus eliminating the necessity for extra nested code blocks.

This section explains the rationale behind these design choices and

demonstrates their importance in facilitating MoonBit’s integration

with LLMs.

2.1 KV Cache Affinity
The utilization of key-value caches (KV cache) plays a crucial role

in enhancing the efficiency of LLMs’ inference processes. In the

context of an autoregressive language model, the KV cache stores

the key and value tensors produced during each step of the autore-

gressive generation [8]. This means a KV cache can be modeled as

a linear array of past intermediate results.

However, a variety of programming languages, including Java,

C++ and Rust, provide syntax and semantic structures that allow

for code blocks with multiple levels of nesting. Although this fea-

ture facilitates the organization of code, it poses challenges for

programmers and LLMs in building up the codebase linearly.
In the example depicted in Figure 1a, a programmer is imple-

menting the method think of the trait Agent for the type Llama.
They discover that type Llama lacks the generate method, which

is defined in the trait LLM. Given their position within a nested code

block, they are required to move out to the toplevel to implement

the trait LLM for the type Llama. However, in the context of LLMs,

altering a prompt several functions back leads to invalidation of the

relevant KV cache segment, highlighted in red in the figure. Follow-

ing such a modification, all these functions undergo re-evaluation,

leading to waste of computational resources, and more critically,

an extended delay in output.

struct Llama { ... }

trait Agent { ... }

impl LLM for Llama ...

impl Agent for Llama {

fn act(&self) ...

fn info(...) ...

fn ...

fn think(&mut self) {

self.generate

(a) Rust

struct Llama { ... }

trait Agent { ... }

fn act(self: Self) ...

fn info(...) ...

fn ...

fn generate(...) ...

fn think(self: Self) {

self.generate

(b) MoonBit

Figure 1: Linearity of Rust and MoonBit

By contrast, as shown in Figure 1b, MoonBit enables program-

mers and LLMs to develop their programs linearly, without frequent
back-and-forth navigation. With the structural interface, functions

implementing an interface are not confined to a specific code block.

This allows a nearly linear generation of interfaces and their re-

spective implementations, thereby effectively minimizing the KV

cache misses.

2.2 Context Modularity
The purpose of requiring full annotation on toplevel functions

is twofold. First, with these type signatures, MoonBit enjoys the

advantage of providing LLMswith prompts that are not only smaller

but also more contextually relevant. It is well known that even

though LLMs are getting larger and larger context windows [9],

evaluating a large prompt remains costly (51.346 s to evaluate 9516

tokens on a M2 Ultra). In MoonBit, the primary focus of the context

is on the signatures of toplevel functions, rather than their full

function bodies. This practice enables a more flexible retrieval-

based prompt augmentation, like the one suggested by Shrivastava

et al. [10] or by Ding et al. [5]. Moreover, by using static analysis

and heuristics, it is feasible to provide LLMs with a more concise

yet relevant part of the toplevel context. This method substantially

lowers the response latency while maintaining the accuracy of the

generated output.

Second, the process of code generation in MoonBit is executed in

a two-stage approach. In the first stage, LLMs are tasked with gen-

erating the signatures of toplevel definitions as complete as possible.

Subsequently, LLMs proceed to generate the body for each toplevel

structure. The explicit signatures of toplevel definitions permits the

independent synthesis and type-checking of each function body.

This top-down approach enhances the flexibility in scheduling and

reorganizing these specific tasks.

3 SEMANTICS-BASED SAMPLING
In this section, we explore the development of the language sam-

pler for MoonBit. Unlike traditional methods, MoonBit’s sampler
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Figure 2: LLM and static analyzer cooperation architecture

collects and utilizes information from both local and global context,

and collaborates closely with both a parser and a static analyzer.

As the LLM generates a new token, it utilizes real-time feedback

from the parser and static analyzer, thereby ensuring that each

generated token is not only syntactically correct but also free from

obvious type errors. The high-level architecture of the cooperation

between the LLM and the analyzer is shown in Figure 2. Tradi-

tional approaches, which lack this collaboration and dump decoded

tokens directly, often fall short, leading to the generation of erro-

neous programs. In §3.4, we provide an evaluation that compares

the results of our MoonBit sampler with those of the raw decoder.

3.1 Real-time Analysis
To provide real-time feedback for MoonBit’s sampler, we have

specially developed an incremental parser and a semantic parser.
The incremental parser is designed to efficiently build a partial

Abstract Syntax Tree (AST) out of any valid program prefixes, and

can resume parsing when new tokens arrive. On the other hand,

the semantic parser offers semantic information, such as types and

variables in scope, by performing static analysis on the partial AST.

This process is made possible because of MoonBit’s fault tolerant
type system, which ensures that type inference is not impeded by

prior type errors. Thus, the incremental parser and the semantic

parser can continuously supply useful information to the sampler.

3.2 Local Sampling
The sampling process from local context involves repeated activa-

tion of the incremental parser, which works as follows. Given a

program prefix 𝑝 , the incremental parser processes it to produce a

partial AST 𝑡 , a parsing state 𝑠 , and a partial token𝑤 . Upon receiv-

ing an additional code snippet Δ𝑝 , the incremental parser resumes

from the state 𝑠 , using the combination of Δ𝑝 and the partial token

𝑤 as its input. As a result, the incremental parser generates a new

triple (𝑡 ′, 𝑠′,𝑤 ′), which is stored as the current state.

The local sampler improves its accuracy by exploiting the incre-

mental parser to verify the validity of the tokens generated from

the LLM’s vocabulary. Given a prompt 𝑝 , the LLM first produces

a list of candidate tokens 𝐿 from its vocabulary. To validate 𝐿, the

incremental parser is then applied to 𝑝 to produce a triple 𝑡, 𝑠,𝑤 .

Subsequently, each token 𝑙 ∈ 𝐿 is processed by the parser: if 𝑙 is

accepted, it is considered valid; otherwise, its sampling probability

is reduced to zero. Thus, the generated code snippet is guaranteed

to be syntactically correct. This approach, similarly applied with

the semantic parser, ensures the variables are used within their

scope and reduces the likelihood of type errors in the generated

code snippets, enhancing their overall quality.

waitstart

check

hint

|𝐶 | > 1

𝑏 ← 𝑏 + Δ𝑝

|𝐶 | = 1 or

suppressed

𝑝 ← 𝑝 + Δ𝑝

|𝐶 | = 0

|𝐶 | = 1

𝑝 ← 𝑏 + Δ𝑝
𝑏 ← ∅

|𝐶 | = 0

𝑏 ← ∅

|𝐶 | > 1

𝑏 ← 𝑏 + Δ𝑝

|𝐶 | = 1

𝑝 ← 𝑝 + Δ𝑝
ℎ ← ∅

|𝐶 | > 1

ℎ ← 𝐶

𝑝 ← 𝑝 + Δ𝑝

Figure 3: State transition diagram for the completion engine

3.3 Global Sampling
In contrast to local sampling, incorporating global context into sam-

pling poses greater challenges. The large size of global context can

be detrimental to the efficiency of real-time code generation. Our

method for global sampling achieves a balance between comprehen-

sive understanding of the global context and optimal performance

by utilizing a completion engine.
To fulfill this objective, our model is designed to speculatively

select a token at the beginning, permitting potentially incorrect

ones. In cases where the token does not match with any of the

completion suggestions from the completion engine, the function

of which will be explained shortly, the prompt is augmented with a

list of completion candidates as in Listing 1. These augmentations

are placed near the end of generation (caret) to minimize KV cache

invalidation.

...

// person has the following methods/fields:

// age, employer

person.

Listing 1: Example Augmentation

The completion engine operates in three states: waiting, check-
ing, and hinting. The set of candidates at caret position is denoted

as𝐶 , with |𝐶 | representing the size of the set. The decoding process
involves a prompt that is comprised of three elements: the specula-

tion buffer 𝑏, the hint ℎ, and the prompt 𝑝 . The token generated by

the LLM is denoted as Δ𝑝 . The state transitions of the completion

engine are shown in Figure 3.

The state of the completion engine is initialize to be waiting.
When the number of completion candidates |𝐶 | exceeds one, the
state transitions to checking. In this state, generation continues

until only one matching candidate remains. During checking, all
generated tokens Δ𝑝𝑖 are stored in the speculation buffer 𝑏. If only

one candidate matches, the engine appends the content of the

speculation buffer 𝑏 to the prompt 𝑝 , and clears the buffer 𝑏. In

the absence of matching candidates, the engine moves to hinting,
informing the LLM about the available candidates by assigning the

string representation of 𝐶 to ℎ. In hinting, every LLM-generated

token Δ𝑝 is appended to the prompt 𝑝 , as it is sampled to match
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the completion candidates. An example edit sequence is shown in

Listing 2.

let x = p1. // by LLM

let x = p1.sq // by LLM, in speculation

let x = p1.sq // |C| = 0, reset speculation

// p1 has the following methods: take_sqrt, ...

let x = p1.take_sqrt // by LLM

let x = p1.take_sqrt // by LLM or auto-completion

Listing 2: Possible editing sequence of program

3.4 Performance Evaluation
We select CodeLlama-34B [9] as our base model. Inference is per-

formed on a 5-bit quantized version of the model in the GGUF

format, on a M2 Ultra CPU with 192 GB unified memory, using

llama.cpp [6].

Our evaluation involves 33 relatively simple coding tasks that

do not trigger prompt augmentations, as all global definitions fall

within the model’s context window. The tasks are processed using

both the raw decoder and the decoder augmented with MoonBit’s

semantics-based sampler. The outcomes are detailed in Table 1.

Notably, we observed a significant improvement in compilation

rate of the output programs, with a modest performance penalty of

approximately 3%.

Raw decoder Semantics-based sampling

Performance 12.10 t/s 11.75 t/s
Compilation Rate 43.75% 56.25%

Table 1: Performance evaluation of semantics–based sampler

For tasks where prompt augmentation is involved, we observed

an average delay of approximately 0.86 s per prompt augmentation.

However, it is commonly observed that each distinct type of prompt

augmentation generally triggers only once. This is because the

model adapts and learns from the context after the augmentation.

Based on the aforementioned results, an equation can be for-

mulated to calculate the time required for the model to generate 𝑘

tokens. Given the length 𝑝 of the prompt , the prompt evaluation

rate 𝑟𝑝 , the generation rate 𝑟𝑘 , and count of global identifiers absent

in the prompt𝑚, the time 𝑡𝑘 to compute the next 𝑘 tokens can be

determined as follows:

𝑡𝑘 =
𝑝

𝑟𝑝
+ 𝑘

0.97 × 𝑟𝑘
+𝑚 × 0.86 s

4 RELATEDWORK
Prior works on combining static information with LLM inference

have shown an effective increase in the accuracy of the generated

code [1, 7, 11]. Many of these works suggest using completion

engine [7, 11] or monitors [1] to guide the token generation process

of large language models, and prune “invalid” tokens so that the

output is type-consistent or satisfy the constraints generated by

static analyzer.

However, these works are limited in their scopes. Synchromesh

focuses on SQL-like languages [7], hence its insufficiency to handle

the global-local duality presented in MoonBit. Monitor-Guided-

Decoding [1] primarily addresses completions triggered by special

characters, while others [11] will request for completion on all
possible candidates suggested by LLM. These limitations underscore

the need for a more general approach to combine static analysis

with LLMs for general programming languages.

In addition to the inference-time approaches above, recent re-

search also reveals the potential of using static analysis at global con-

text to guide the code generation and testing process [2, 5, 10, 12].

For example, Eric Zelikman et al. use static analysis to generate a

dependency graph between toplevel function signatures, and group

these function signatures according to their dependencies to allow

faster test and verification of the generated results [12]; Bairi et al.

use static analysis to retrieve temporal and spatial context to guide

LLMs to generate repository level code-edits. [2]

5 CONCLUSIONS AND FUTUREWORK
Our exploration into the MoonBit’s AI-first design has yielded

promising results, notably in generating accurate programs using

the CodeLlama-34B [9] model combined with domain expertise.

The standout achievement is the program’s ability to decode at

speeds comparable to the original decoder, while ensuring syntax

accuracy and greatly enhancing semantic precision through live

semantic analysis.

Furthermore, we are in the process of creating a package man-

ager, which is instrumental in aggregating additional data to fine-

tune themodel. Future objectives include the enhancement ofMoon-

Bit’s AI capabilities, incorporating functionalities such as code as-

sistance, review, question and answer interfaces, test generation,

and validation mechanisms. In parallel, we are planning a fast in-

terpreter to provide real-time feedback during runtime. This will

further increase the reliability of the AI-generated code.
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