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ABSTRACT
Large Language Models (LLMs) have achieved remarkable success
in code completion, as evidenced by their essential roles in devel-
oping code assistant services such as Copilot. Being trained on
in-file contexts, current LLMs are quite effective in completing code
for single source files. However, it is challenging for them to con-
duct repository-level code completion for large software projects
that require cross-file information. Existing research on LLM-based
repository-level code completion identifies and integrates cross-
file contexts, but it suffers from low accuracy and limited context
length of LLMs. In this paper, we argue that Integrated Develop-
ment Environments (IDEs) can provide direct, accurate and real-
time cross-file information for repository-level code completion.
We propose IDECoder, a practical framework that leverages IDE
native static contexts for cross-context construction and diagnosis
results for self-refinement. IDECoder utilizes the rich cross-context
information available in IDEs to enhance the capabilities of LLMs of
repository-level code completion. We conducted preliminary exper-
iments to validate the performance of IDECoder and observed that
this synergy represents a promising trend for future exploration.
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1 INTRODUCTION
Inspired by the great success of large language models (LLMs) on
natural language processing (NLP), code LLMs, including CodeX [19]
and StarCoder [14], are proposed and obtain promising perfor-
mance in code intelligence tasks such as code completion. The code
LLMs broadly advance the development of code assistant services
like Copilot [10] and CodeWhisperer [2]. By providing real-time,
context-based code suggestions, code assistant services significantly
improve developer productivity.

Similar to general LLMs, code LLMs are trained on in-file con-
texts [5, 14, 19] and are not aware of software project architectures.
Without cross-file information such as imported methods and ex-
ternal classes, they struggle to understand the entire architecture
of a software project and obtain significantly low performance in
repository-level (repo-level) code completion [6]. Fig. 1 presents a
failed case of StarCoder [14] in repo-level code completion. Even
with a large knowledge base obtained in the pre-training stage,
Code LLM fails to complete the logging statement since the in-file
context does not provide sufficient type information of variable
Service, which is defined in another file and may not appear in the
training data. Therefore, it is essential to include cross-file informa-
tion, which cannot be obtained in the internal knowledge base, for
code LLMs in repo-level code completion.

To include cross-file context information, researchers have pro-
posed various repo-level code generation frameworks [1, 3, 7, 24, 28].
Most adopt two major steps: identifying the appropriate cross-file
context and logically integrating cross-file contexts. To identify
cross-file contexts, they employ techniques such as identifier name
matching [7] and semantics retrieval [9, 28]. For fusing cross-file
contexts, they utilize methods like all-import [1] and encoding-
based fusion [24]. These approaches can supplement the in-file
contexts with external knowledge. However, they still suffer from
unsatisfactory performance due to various factors, such as inaccu-
rate context identification caused by complicated language features
and limited context length of LLMs.
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？

Import XXX.Service
…
public void stateChanged (Service service) {
 log.info(
 …
}

In-file context

("State Changed to " + 
service.getServiceState());

(State Changed to service.State());

In-file context only

With cross-file contextpublic interface Service extends Closeable {
 public enum STATE {
 …
 }

 STATE getServiceState();
}

Cross-file context

Figure 1: An example of the completed code from StarCoder.
StarCoder fails to complete a Java program correctly as the
in-file context does not provide sufficient type information
of Service. To get the service state, the model needs to know
the member function getServiceState of Service.

Modern Integrated Development Environments (IDEs) [12, 16]
natively offering robust code navigation, suggestion and static diag-
nosis capabilities, are widely used by developers in software devel-
opment. IDEs can manage the entire project structure and provide
practical cross-file context information, such as class hierarchies,
function signatures, and variable types in real time. Despite the
impressive performance of current LLM-powered coding tools, they
do not make use of the rich context information available within
IDEs and thus struggle to handle repo-level code completion.

In this work, we argue that LLMs and LLM-powered coding tools
should address code completion tasks by jointly considering in-file
and cross-file contexts, leveraging the native static information
and static diagnosis result (warnings, errors) directly provided by
Integrated Development Environments (IDEs) [25] during develop-
ment. We propose IDECoder, a novel and practical LLM-based code
completion framework powered by IDE native static contexts. Our
vision is to integrate native static information as static contexts and
diagnosis results as feedback for self-refinement. This framework
allows LLMs to utilize the wealth of cross-file information in IDEs,
ultimately enhancing their capabilities to complete code that is
aware of the overall project structure and dependencies. We con-
duct preliminary experiments of IDECoder which demonstrate the
promise of IDE native code LLMs as a promising and practical di-
rection of exploration. By integrating static contexts and diagnosis
results, our framework paves the way for more sophisticated and
context-aware code completion, ultimately benefiting developers
in their software development.

2 REPO-LEVEL CODE COMPLETION:
CHALLENGES

Repo-level code completion aims to complete code using the cross-
file broader contexts. However, it faces difficulties in accessing use-
ful and relevant information dispersed across files, such as imported
classes and their member functions from different modules, global
variables, and external classes with unknown type details. This
process involves two primary steps: cross-file context identification
and context fusion. In the following subsections, we introduce the
challenges for the two steps.

2.1 Identification of Cross-file Contexts
When working with a code snippet and associated files in a reposi-
tory, it is crucial to identify the most relevant and useful cross-file
contexts, such as member functions of utilized variables, for code-
based LLMs. This ensures accurate reference and prevents confusion
for LLMs. The primary challenges in identifying cross-file contexts
are maintaining Accuracy and ensuring Relevance.

Accuracy. Current retrieval-based methods [7, 15, 28] of identi-
fying related references based on identity names and semantic sim-
ilarity can hardly handle complicated program language features,
such as inheritance, polymorphism, and complex namespaces, and
thus leading to wrong identifications. Accurately identifying the
cross-file contexts necessitates a more refined approach considering
the specific language features. In contrast to Retrieval-Augmented
Generation (RAG) [13] tasks based on semantic similarity, fuzzy
matching is generally not applicable for code-related tasks under
the soundness requirement. Therefore, there is a need for develop-
ing static analysis-enhanced retrieval approaches.

Relevance. Accurate reference and definition identification are
not enough for building cross-file contexts. It is also crucial to iden-
tify relevant contexts that reflect the developer’s intentions, such
as code comments [7]. This helps LLMs understand the relation-
ships across the repository, such as the expected method invocation
sequences, the functional role of the current file within the entire
project, and the module dependencies. Existing approaches [8, 9]
provide the code LLMs with similar code snippets via in-context
learning to teach code-based LLMs how to program in the current
case. However, LLMs do not actually understand the developer’s
intention in the current project and the role of the current source
file since examples come from other software projects and are not
relevant to the current project.

2.2 Fusion of Cross-file Contexts
Given the collected cross-file contexts, it is essential to organize
them in a way that code-based LLMs can better understand. Sim-
ply concatenating in-file and cross-file contexts is suboptimal for
two reasons. First, it is impractical to include all source codes of
identified import classes, due to the limited context length of LLMs.
Second, overlong contexts can also hurt the performance of cur-
rent code-based LLMs [7] and lead to excessive costs [20]. Current
encoding-based methods [7, 24] simply fuse these contexts together,
but they still need LLMs to be tuned for the new data format. Besides,
approaches that rely solely on in-context learning [9] by provid-
ing input and output examples may exacerbate the drawbacks of
similarity-based retrieval methods.

Furthermore, different elements in the contexts should have
different importance. For example, local dependencies in the current
projects are more important than popular third-party packages (i.e.,
Numpy [18]), as the later ones may already exist in the internal
knowledge base of LLMs.

3 METHODOLOGY
The IDECoder aims to integrate static information as static contexts
and diagnosis results in LLM-based code completion. As illustrate



Enhancing LLM-Based Coding Tools through Native Integration of IDE-Derived Static Context LLM4Code ’24, April 20, 2024, Lisbon, Portugal

Project IDE

Required type: String[]
Provided Boolean

jdt.core.dom.ASTParser
public void setEnvironment (
    String[] classpathEntries
     ....
)

Incomplete Code

LLM

Invocation
relationships

Global
variables

Prompt
Incomplete Code

Refined Output

public void setup (
 ....
 parser.setEnvironment(srcPaths,
                classpathEntries,
                encodings,
                true);
    ….
)

Project
paths

Docstring

Class
attributes

Member
functions

Cross-file context
IDE Linting Feedback

Figure 2: The overall framework of IDECoder.

in Fig. 2, IDECoder takes the target incomplete code and its corre-
sponding project as input in IDE. By leveraging the analysis capa-
bilities of IDEs, IDECoder accurately identifies cross-file contexts
and extracts relevant information for cross-file context identifica-
tion. Next, IDECoder models and organizes the identified cross-file
contexts as inputs for the LLMs. It employs a chain-of-thought [21]
methodology to model this information sequentially, enabling the
LLM to generate more contextually relevant code completions. Fi-
nally, IDECoder refines the generated code using the diagnostic
output from the IDE’s linting service, which ensures the quality
and correctness of the generated code.

To effectively integrate cross-file context information into the
LLM-based code completion process, our methodology focuses on
three key phases: cross-file context identification, cross-file context
fusion, and linting-based code refinement.

3.1 Cross-file Context Identification
To address the challenges of cross-file context identification, we
take advantage of the native capabilities of IDEs to pinpoint above
mentioned cross-file contexts.

In terms of Accuracy, IDEs provide various features such as ab-
stract syntax tree (AST) construction, symbol table [22] creation,
reference indexing, and code element localization. By utilizing these
features, IDEs can parse code, identify code elements, references and
further relationships, and look up class attributes. With language-
specific static analysis, IDEs can accurately identify cross-file con-
texts. This allows IDECoder to overcome the limitations of current
retrieval-based methods [7, 27, 28] by considering language-specific
features like inheritance, polymorphism, and complex namespaces.

For Relevance, IDEs can assist in identifying the most pertinent
cross-file contexts that reflect the developers’ intentions, such as
docstrings of imported methods, method invocation relationships,
method functionalities, and module dependencies. By understand-
ing the relationships of different code elements within the reposi-
tory, IDEs can provide valuable contextual information to LLMs,
enabling them to generate code that aligns with the developers’
intentions and project structure.

3.2 Cross-file Context Fusion
Given the identified cross-file contexts, IDECoder then organizes
them as inputs for LLMs. Unlike previous methods such as encod-
ing [7, 24], all import [1], reasoning [3] that use the complete code
of methods in cross-file contexts, IDECoder utilizes docstrings, as
well as method and class signatures with detailed type informa-
tion. Docstrings indicate the developers’ intentions of building the
methods, while method and class signatures reflect the functionali-
ties. Using them instead of the entire code could largely reduce the
context length without losing valuable information.

To collect docstrings and method and class signatures, IDECoder
first analyzes the imported packages and modules in the reposi-
tory to differentiate between widely used third-party libraries and
user-defined classes and methods. IDECoder incorporates differ-
ent strategies for handling third-party libraries and user-defined
classes and methods. For third-party libraries, such as NumPy [18]
in Python, IDECoder briefly includes version information of the
package to ensure API as the code and usage patterns of such li-
braries may already exist in the knowledge base of LLMs obtained
in the pre-training stage [11]. For user-defined classes and meth-
ods, IDECoder extracts their essential properties and relationships.
It then collects docstrings and method and class signatures with de-
tailed type information acquired from class and method definitions.
By leveraging such information, IDECoder can create a concise and
informative representation of the cross-file context, enabling LLMs
to make accurate and contextually relevant code completions.

Given the collected docstrings and method and class signatures,
IDECoder does not directly list them as the inputs. Instead, it em-
ploys a chain-of-thought methodology [21] to model information,
sequentially illustrating each piece of information. This approach
introduces the acquired context in a top-down manner, ranging
from the functional role to specific type details. This mechanism
allows IDECoder to consider the sequence of code elements, their
relationships, and the developers’ intentions when generating code
completions. By incorporating this information, IDECoder can gen-
erate more contextually relevant and coherent code snippets that
adhere to the project’s structure and design principles. Once the
chain-of-thought prompts are constructed, they are sent to the
LLMs for initial results.
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3.3 Linting-based Code Refinement
Given the completed code generated by LLMs, IDECoder further
conducts linting-based code refinement to ensure the quality and
correctness of the generated code.

Current IDEs utilize a range of as-you-type static code inspection
tools, such as Pylance [16] and ESLint [12], to identify and rectify
incorrect code within a project before compilation. Once IDECoder
receives completion results from LLMs, the IDE’s as-you-type lint-
ing service is activated to detect potential warnings, type errors,
and method usage issues.

IDECoder employs a two-step process to ensure the quality of
completed code. First, it utilizes the diagnostic output from the
linting service to identify issues [25] in the generated code. Then, it
resends the identified issues and their previous context to the LLMs
for correction and refinement. This process enhances the generated
code’s quality and allows IDECoder to self-improve and rectify vari-
able usage, ensuring the generated code’s syntactical correctness.
In the case of unimported used methods in completed code, the
import management process is optimized to efficiently maintain
import packages with the suggestions of linting, overcoming the
limitations of plain text style completion.

After refining the code based on the linting feedback, IDECoder-
presents the corrected code to the user. Linting-based code refine-
ment offers a more lightweight, real-time, and unobtrusive user
experience compared to conversational program repair [26] using
execution feedback, as it does not necessitate program execution.

4 PRELIMINARY EVALUATION
4.1 Preliminary Implementation
We access the static information by hooking into Pylance [16] as
the proof-of-concept to showcase the effectiveness of IDECoder
in this vision paper. Pylance is an extension that works alongside
Python in Visual Studio Code [17] to provide Python language
services for programmers. All contexts for prompt construction
come from hooking into events of the Pylance plugin. For some
strongly-coupled information that cannot be hooked, wemanually
collect and send them to LLMs in our experiments.

We set GPT-3.5 (the fixed version, gpt-3.5-turbo-0301) as the
backbonemodel. Besides,We adjusted the temperature to 0 to ensure
the model consistent generation, thereby ensuring reproducibility.

4.2 Evaluation Setup
Datasets. Owing to the lack of repo-level code completion datasets,
we emulate the data collection pipeline from the code completion
dataset that has cross-file contextual information CROSSCODEEVAL [6].
Other cross-file datasets [6, 7] are not applicable because they do not
allow customized prompts as inputs for by offering the fixed cross-
file prompts. We randomly sample 10 Python repositories from
CROSSCODEEVAL to conduct the function body completion task [28]
(functions less than 15 lines) and use the GPT-3.5 backbone model,
as it can comprehend complex prompt strategies.
Metrics. In line with previous works [4, 9, 23], we evaluate the
performance of code completion with three metrics including Exact
Match (EM), CodeBLEU (CB) [23], and Syntax Match (SM). EM
evaluates the extent to which the model-generated code is identical

to the target code. CB calculates the similarity of code snippets by
considering syntax and semantic information, such as data flow and
Abstract Syntax Tree (AST). SM quantifies the match of subtrees
within the code.

4.3 Evaluation Results
As a preliminary step, we implement three methods as baselines for
comparison: an in-file completionmethod, an all-import method [1],
and a basic RAG [28] method following the previous work [28].

Table 1: Performance comparison on the function body com-
pletion dataset. Numbers are shown in percentage (%).

Metrics Exact Match CodeBLEU Syntax Match

In-file 7.37 27.84 44.17
All-import 6.71 30.53 46.24
RAG 9.77 31.65 48.92
IDECoder 10.46 34.16 50.73

Based on the evaluation results presented in Table. 1, IDECoder
consistently outperforms all baseline methods in code completion
tasks, highlighting its effectiveness. The performance of the other
frameworks in these tasks underlines the existing limitations in
cross-file code completion. Note that the current implementation of
IDECoder is constrained by the closed-source Pylance plugin, which
restricts full access to the aforementioned contexts. In future work,
if IDE vendors develop customizable native coding tools that allow
for more extensive access to cross-file contexts, the performance
of the IDECoder framework could potentially surpass its current
capabilities.

5 DISCUSSION AND FUTURE PLANS
Code LLMs are becoming increasingly influential and gradually
integrating into the daily lives of developers, benefits millions of
users. LLMs natively integrated with Integrated Development Envi-
ronments (IDEs) are expected to be even more powerful and natural.
The strong capabilities of IDEs in retrieving information and pro-
filing project structures largely enhance current large-scale code
models. Our preliminary experiment (seen in Sec. 4) results sup-
port this claim, demonstrating a promising research direction of
learning cross-file contexts.

In the future, we plan to implement a more mature version of
IDECoder by developing the IDE plugin, which can support user-
defined backbone LLMs. Additionally, we will extend IDECoder
to support a broader range of code-related tasks. As the core idea
of extending cross-file contexts from IDE-provided static informa-
tion for code intelligence tasks has shown success in this paper, it
can be generalized to other code-related tasks, such as repo-level
automated program repair (APR) and IDE-assisted automated de-
bugging.
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