
StudentEval: A Benchmark of Student-Written Prompts for Large
Language Models of Code

Hannah McLean Babe
Oberlin College
Oberlin, OH, USA

Sydney Nguyen
Wellesley College
Wellesley, MA, USA

Yangtian Zi
Northeastern University

Boston, MA, USA

Arjun Guha
Northeastern University and Roblox

Boston, MA, USA

Molly Q Feldman
Oberlin College
Oberlin, OH, USA

Carolyn Jane Anderson
Wellesley College
Wellesley, MA, USA

Abstract

Code LLMs have the potential to make it easier for non-experts
to understand and write code. However, current CodeLLM bench-
marks rely on a single expert-written prompt per problem, making
it hard to generalize their success to non-expert users. In this paper,
we present a new natural-language-to-code benchmark of prompts
written by a key population of non-experts: beginning program-
mers. StudentEval contains 1,749 prompts written by 80 students
who have only completed one introductory Python course. Studen-
tEval contains numerous non-expert prompts describing the same
problem, enabling exploration of key factors in prompt success. We
use StudentEval to evaluate 12 Code LLMs and find that Studen-
tEval is a better discriminator of model performance than existing
benchmarks. Our analysis of student prompting strategies reveals
that nondeterministic LLM sampling can mislead students about
the quality of their descriptions, a finding with key implications for
Code LLMs in education.

1 Introduction

Large language models trained on both natural language and pro-
gramming language text (Code LLMs) have the potential to democ-
ratize programming: less-experienced programmers can interact
with models in natural language to write, edit, and explain code.
A growing body of work looks at their potential impact on the
productivity of professional programmers [5, 25, 27], and a num-
ber of evaluation benchmarks have been developed for the natural
language-to-code task [3, 8, 13, 15, 16]. However, the evaluation
of Code LLMs has for the most part been modeled after experts,
both in the choice of test problems, and by having professional
programmers write the natural language prompts.

Popular benchmarks such as HumanEval [8] and MBPP [3] con-
sist of many problems from varying areas of computing, accom-
panied by a single expert-written prompt. Achieving good perfor-
mance on these benchmarks indicates that a model will perform
well across many programming tasks, assuming that the user can

write prompts equally as well as the expert.
In this paper, we present a Code LLM benchmark that asks how

well models perform when users do not know how to sound like
experts. Our StudentEval dataset contains 1,749 written by be-
ginning CS students, validated with expert-written test cases, and
constructed using a novel approach that sets it apart from prior
work in three key ways. 1) Existing benchmarks have prompts
authored by more experienced programmers, whereas StudentE-
val has prompts authored by students who have only completed one

computer science course. 2) Existing benchmarks contain tricky prob-
lems designed to stress-test the problem solving capabilities of Code
LLMs. In contrast, StudentEval has problems that are easily solved
with expert-written descriptions, but often fail with student-written

descriptions. 3) Existing benchmarks only have a single prompt per
problem, whereas StudentEval has on average 36 prompts per prob-

lem, representing a variety of prompting skill levels. This diversity
lets us explore what it means to write a “good" prompt.

The StudentEval problems target a specific skill level and pro-
vide a diverse set of prompts for each problem along with expert-
written test cases. Students wrote English descriptions of these
problems in an iterative manner in collaboration with a Codex
model. Prompts were collecting using 48 beginner-appropriate prob-
lems; StudentEval contains numerous different prompts for each
problem. Our prompts exhibit the variation in technical vocabulary
and lack of familiarity with how to describe code that are common
with non-experts. While other researchers have considered novice
student interactions with Code LLMs [17], StudentEval is the first
benchmark based on student interactions. This framing provides
significant insight into Code LLM reasoning capabilities outside of
the educational context.

Our key contributions are:

• We present StudentEval, a benchmark consisting of 1,749
student-written descriptions of natural-language-to-code
tasks.

• Using four key subsets of the StudentEval benchmark,
consisting of descriptions that pass (fail) on the first (last)
attempt by a student, we evaluate 12 state-of-the-art Code
LLMs. Our results show that StudentEval is better able to
discriminate between models than the popular HumanEval
benchmark.

• We conduct an in-depth analysis of the prompts and find
that even successful student prompts lead models to gener-
ate multiple semantically distinct programs.

2 Background

Existing benchmarks pair natural language descriptions of code
with test cases to check the validity of generated programs. The two
most commonly used benchmarks, HumanEval [8] and MBPP [3],
are in Python. There are also multi-language benchmarks that trans-
late problems from one language to another [2, 6]. Finally, there are
alternate benchmark formats, including multi-turn evaluation [22]
and docstring generation [20].

Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, Arjun Guha, Molly Q Feldman, and Carolyn Jane Anderson

General-purpose benchmarks Most existing benchmarks have a
single natural language description of a problem, typically written
by an expert programmer. There are a few exceptions that scrape
the web or crowdsource [1, 13, 16], but expert-written benchmark
predominate. These benchmarks provide wide coverage, but come
with limitations. First, they have a single prompt per problem. Con-
sider this HumanEval prompt:

Imagine a road that’s a perfectly straight infinitely long line. n

cars are driving left to right; simultaneously, a different set of n cars

are driving right to left. The two sets of cars start out being very far

from each other. All cars move in the same speed. Two cars are said to

collide when a car that’s moving left to right hits a car that’s moving

right to left. However, the cars are infinitely sturdy and strong; as

a result, they continue moving in their trajectory as if they did not

collide. This function outputs the number of such collisions.

While the correct solution is simply 𝑛2, the prompt is designed
to be confusing. Models succeed or fail based on this specific phras-
ing. Having a single prompt precludes explorations of how crucial
word choice, grammar, etc. is to model success. StudentEval’s
non-expert, multi-prompt construction enables us to analyze what
makes a successful prompt: each problem has at least 14 prompts
that describe the task in a different way.

Second, existing benchmarks contain problems at widely varying
difficulty levels. Compare the problem above, which requires math-
ematical reasoning that may challenge many programmers, with
a trivial problem from the same benchmark [8]: Return length of

given string. Although these benchmarks cover a wide range of pro-
gramming tasks, it is difficult to interpret their results as evidence
that a model will or won’t suit a particular group of programmers,
since they aggregate over very different skill levels.

Domain-specific benchmarks There are also a handful of domain-
specific benchmarks, such as DS-1000 [16] and MathQA [3]. Like
these domain-specific benchmarks, we target a specific population
of programmers; however, we target a particular skill level rather
than an application area. In addition, we provide numerous non-
expert prompts per problem.

Beyond natural language to code This paper and the aforemen-
tioned work focuses on the natural language to code task. However,
there are a number of benchmarks that focus on a variety of other
tasks, including program repair, code editing, test generation, and
more (e.g., [7, 9, 21, 23]).

3 The StudentEval Dataset

In this section we describe StudentEval, a many-prompt-per-
problem benchmark that targets a specific programmer skill level.1
The dataset consists of 1,749 English-language prompts for 48 pro-
gramming problems, with at least 14 prompts per problem. All
prompts were written by university students who had completed a
single semester of computer science in Python (CS1). These students
represent a population of programmers with a uniform knowledge
base, allowing us to choose problems that they all should be able
to solve. The data was collected in Spring 2023, during the first six
months that ChatGPT was available. However, our discussions with

1Available at https://huggingface.co/datasets/wellesley-easel/StudentEval

participants indicate that participants were generally unfamiliar
with Generative AI.

Problem Selection and Format Given our goal of collecting many
non-expert descriptions for each problem, we compiled a suite of
48 programs that closely resembled the kinds of problems that
are familiar to students. The majority of problems were pulled
directly fromCS1 coursematerials, with light modifications to avoid
publishing answers to assignments still in use. Thus, all participants
should be able to understand and solve the problems by directly
writing solutions in Python; we explore whether they are also
able to describe them in natural language so that Code LLMs can
solve them. The problems exercise a variety of Python features.
For topic diversity, we define 8 core concepts: lists, loops, strings,
conditionals, math, nested data, sorting, and dictionaries.

Each StudentEval problem consists of three components: a
function signature, a reference implementation, and 3+ test cases
that achieve high coverage on the reference implementation (Fig-
ure 1). When we gather student data, which we describe below, we
show participants only a function’s signature and test cases. From
this information, they produce a description, which we automati-
cally validate using the problem’s test cases.

Problem Validation We validated our problems in several ways.
For common problems (e.g. factorial), LLMs can produce working
implementations from the function name alone. To weed out these
problems, we produced Codex [8] generations from each function
signature with no docstring and measured mean pass@1 rate [8],
which is a standard metric that estimates the probability that the
Code LLM produces a solution that passes all tests in one shot,
calculated over 200 samples. Overall, the mean pass@1 for our
signatures without docstrings is 0.0519 with a variance of 0.0364.
The maximum pass@1 is 0.925, for the problem exp.

We also validated the test suites associated with each problem.
The test cases serve two roles in our dataset collection: they help
students understand the problem, and they ensure that the LLM-
generated solutions are correct. Liu et al. [19] give evidence that
the test cases that accompany widely-used Code LLM benchmarks
frequently miss important corner cases. To avoid this pitfall, we
use both test coverage and mutation testing of the reference im-
plementation to ensure that the test cases in StudentEval are
adequate. Unlike in Liu et al. [19], the StudentEval tests need to
be understood by students who have only completed CS1. We strive
for a balance between exhaustiveness and comprehensibility: each
problem has 3–4 tests that achieve 100% code coverage. Mutation
testing [14] is a more rigorous way than coverage to measure the
quality of a test suite, and we used MutPy [12] to compute muta-
tion scores. All mutation scores below 90 are either the result of
MutPy generating no mutations or generating a technically correct
mutation that still passes tests.

Gathering 1,749 Student-Written Prompts We recruited 80 begin-
ning CS students from three U.S. higher education institutions to
build the StudentEval benchmark. The study was IRB-approved
- we obtained consent prior to and verbal assent during the study.
We conducted the study over Zoom, using a web-based application
designed specifically for StudentEval . This application presents
the function signature and tests for one problem at a time. Students

https://huggingface.co/datasets/wellesley-easel/StudentEval

StudentEval: A Benchmark of Student-Written Prompts for Large Language Models of Code

Function signature (visible) def convert(lst):

Expert tests (visible to student; hidden
from model; automatically run on gen-
erated code)

Input Expected Output

[0,1,2,3] [’ABCD’]
[0,-1,1,-1,2] [’A’,’B’,’C’]
[1,1,1,-1,25,25,-1,0,1,2] [’BBB’,’ZZ’,’ABC’]

Student description

(pass@1 = 0.8)
takes a list of numbers. Create a ABC list with the capital letters in the alphabet and create an answer

string. Iterate through the input list, if there is "-1" then add ’ ’ to the answer string, or otherwise,

add the letter with the corresponding index of the answer string. Split the answer string at ’ ’. return

the answer string.

Student description

(pass@1 = 0.0)
Assign a number from 0~25 to each alphabet, and create a list of string of alphabetical letters based

on their assigned numbers in the lst. When there is -1 in the lst, create a new string and add it to the

list. Return a list of created strings.

Figure 1: An example StudentEval problem. Our web-based experiment platform shows students the signature and expert-

written tests. When students submit their description, we use a Code LLM to generate code, test it, and flag failed tests for the

students. StudentEval has numerous student-written descriptions of each problem.

Subset Items Word Count
First Failure 450 28.8 (25.5) ± 16.7
First Success 187 28.8 (25.0) ± 17.4
Last Failure 205 35.9 (30.0) ± 22.6
Last Success 185 37.8 (35.0) ± 18.4

(a) Sizes and word counts.

0

25

50

75

100

Problem

N
um

be
r

of
 s

ub
m

is
si

on
s

Success and Order
Middle SuccessFirst SuccessLast

UnsuccessFirst UnsuccessLast

(b) Attempts per problem.

Figure 2: The four subsets of StudentEval.

enter a problem description into a text box. After they submit, our
server constructs a prompt with the function signature and their
problem description formatted as a Python docstring, and sends
this prompt to Codex to produce the function body. The server then
tests the function in a sandbox and presents the test results to the
participant. Students had the option to reattempt the problem or
move on to the next problem. Participants completed three tutorial
and 8 StudentEval problems in 75 minutes, receiving a $50 gift
card for participation.

Dataset Subsets and Basic Statistics Students generated 1,749
prompts in total, with an average of 36 prompts per problem. There
are significant variations in how the prompts differ from each other:
many are small, iterative changes (+/- a few words) whereas a stu-
dent’s first, last, and successful prompts tend to vary significantly
from others. To refine the dataset for evaluation, we break the Stu-
dentEval dataset into four disjoint subsets (Figure 2a): students
most frequently failed to solve problems on their first attempt, and
this is the largest subset of problems (First Failure); about half as
many first attempts were successful (First Success); slightly fewer
students gave up after multiple attempts (Last Failure); and others
succeeded after multiple attempts (Last Success). In cases where a
student attempts a problem exactly once, we classify it as a First
Failure or First Success. These subsets omit “Middle” prompts (Fig-
ure 2b), which are failures and neither first nor last attempts. Fig-
ure 2a shows that Last descriptions are significantly longer than
First, which suggests students add detail even when starting afresh
might be better.

4 Results

We evaluate 12 Code LLMs. We focus our comparison on gpt-3.5-
turbo, the three “Python specialist” Code Llama models [4], the
four StarCoderBase models [18], and Phi-1 [11]. We confirm that
none of the StudentEval prompts appear in The Stack, the open
training dataset for StarCoderBase and other models. As with other
benchmarks, we use hidden unit tests to evaluate the correctness
of model-generated code. We use standard generation parameters
for all models.2

4.1 How Do Models Perform on StudentEval?

Table 1 reports the mean pass@1 rate for every model on the four
subsets of StudentEval. We include HumanEval pass@1 rates for
comparison.

Code Llama models perform best We find that the Code Llama

models significantly outperform all other models on the First/Last
2We use temperature 0.2, 0.95 top-𝑝 sampling, and generate up to 512 new tokens.

Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, Arjun Guha, Molly Q Feldman, and Carolyn Jane Anderson

Table 1: Mean pass@1 for the models that we evaluate on the four subsets of StudentEval.

Model (Size) First Failure Last Failure First Success Last Success HumanEval
GPT-3.5-Turbo-0301 (?) 10.86 12.41 44.84 47.40 48.1
Phi-1 (1.3B) 11.28 8.37 59.16 36.36 51.22
StarCoderBase-1B (1B) 1.77 1.21 24.86 13.00 15.17
StarCoderBase-3B (3B) 5.91 5.66 51.73 32.20 21.46
StarCoderBase-7B (7B) 5.49 6.82 62.35 46.42 28.37
StarCoderBase (15.5B) 7.82 6.74 65.28 51.74 30.40
Code-Llama-Py-7B (7B) 6.51 8.59 66.88 55.36 40.48
Code-Llama-Py-13B (13B) 9.56 9.33 70.22 62.26 42.89
Code-Llama-Py-34B (34B) 11.40 10.14 73.51 64.65 53.29

Success prompts. The 13B model outperforms StarCoderBase-15B,
the closest competing model, by 5-10% (absolute). The 34B model
performs even better.

StudentEval exposes a bigger gap between large and small models

than HumanEval HumanEval is the de facto standard code bench-
mark; and many Code LLM developers strive to obtain good Hu-
manEval scores, and many smaller LLMs have achieved HumanEval
scores that are competitive with larger LLMs. However, we observe
that the difference between pass@1 rates for large and small models
is more substantial with StudentEval than HumanEval. 1) For the
StarCoderBase models, pass@1 on Last Success is almost 4x higher
with the 15B model vs the 1B model, but the gap is much smaller
(2x) on HumanEval. 2) Phi-1 (1.3B) approaches Code Llama (34B)
on HumanEval, but Code Llama is 1.7x better on Last Success than
Phi-1. Phi-1’s HumanEval performance comes from its “textbook
quality” training data. Unfortunately, novices don’t write textbook
quality prompts. Our results suggest that natural data is better at
helping non-experts.

4.2 Variation in Pass@1

Most Code LLM papers only report mean pass@1 for a benchmark,
averaging over problems with widely varying pass rates. Because
StudentEval contains multiple prompts per problem, it illumi-
nates the extent to which luck plays a role in whether a Code LLM
produces the right answer for a user. In Figure 3, we group prompts
by problem, so the plots show the percentage of problems (𝑌) with
pass@1 lower than the indicated value (𝑋).

For a given model, we define a reliable failure as a prompt that
is in First/Last Failure but has pass@1 greater than 0.8 (problems to
the right of the dashed line at 0.8 in the CDF). These are unlucky
cases: the prompt failed when the student tried it, but turns out to be
reliable. We find that GPT-3.5-Turbo-0301 and StarCoderBase have
one and two reliable failures each. Similarly, we define an unreliable

success as a prompt that is in First/Last Success but has pass@1
lower than 0.2. These are lucky cases: the prompt worked once for
a student, but that success is hard to reproduce. We find that nearly
10% of successful prompts are unreliable for small models, but less
than 3% are unreliable with larger models .

This has implications for model selection. It is not adequate
to optimize a model to achieve high pass@1 on any benchmark

(including StudentEval). Instead, an ideal Code LLM would both
maximize pass@1 and minimize its variability.

4.3 Participant Success Rates

Examining prompt success rates by participant reveals a wide spec-
trum of prompting ability levels among our participants (Figure 4).
Although some non-experts achieve prompt success rates over 50%
with StarCoderBase, a large number struggle to write reliably suc-
cessful prompts.

5 What Makes a Successful Prompt?

A participant might have a low success rate for various reasons.
They might not be very skilled at writing prompts, describing the
problem to be solved vaguely or even incorrectly. Or they may
be writing clear explanations of the problems, but in a style that
the model does not understand. Thus, a low success rate does not
necessarily indicate a lack of skill on the part of the participant; it
can also indicate that models systematically struggle with particular
ways to describe code. In this section, we explore the various factors
that impact the success of non-expert-written prompts.

5.1 Trends in Student Word Choice

To explore the relative importance of different words, we tokenized
the StudentEval prompts and computed TF-IDF values for the
four data subsets and then calculated the mean score per word
across all prompts. Figure 5 shows the mean frequency matrix for
words that appear in the top 25 for all subsets . The top words are a
mix of English and Python terms, including many related to types,
sequencing, or choice (Figure 5). The inclusion of “return” may be
related to the fact that Codex seems to default to printing output,
causing tests to fail; students may learn to specify “return” through
experience. We see a similar trend for parameter names.

5.2 Statistical Significance of Prompt Wording

We fitted mixed-effects regression models to the data to test the
impact of prompt length and wording choices. All models include
random effects for problems and use StarCoderBase pass@1 rates
as the response variable. For vocabulary-level features, we use
indicator variables: 1 if the prompt uses the word and 0 otherwise.

Length Contrary to our expectations, we observed a statisti-
cally significant positive effect of prompt length on pass@1 rates

StudentEval: A Benchmark of Student-Written Prompts for Large Language Models of Code

0.0 0.2 0.4 0.6 0.8 1.0
pass@1

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 P

ro
bl

em
s

GPT-3.5-Turbo-0301

0.0 0.2 0.4 0.6 0.8 1.0
pass@1

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 P

ro
bl

em
s

Phi-1

0.0 0.2 0.4 0.6 0.8 1.0
pass@1

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 P

ro
bl

em
s

StarCoderBase-1B

0.0 0.2 0.4 0.6 0.8 1.0
pass@1

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 P

ro
bl

em
s

StarCoderBase-3B

0.0 0.2 0.4 0.6 0.8 1.0
pass@1

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

 P
ro

bl
em

s
StarCoderBase-7B

0.0 0.2 0.4 0.6 0.8 1.0
pass@1

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 P

ro
bl

em
s

StarCoderBase

0.0 0.2 0.4 0.6 0.8 1.0
pass@1

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 P

ro
bl

em
s

Code-Llama-Py-7B

0.0 0.2 0.4 0.6 0.8 1.0
pass@1

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 P

ro
bl

em
s

Code-Llama-Py-13B

0.0 0.2 0.4 0.6 0.8 1.0
pass@1

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 P

ro
bl

em
s

Code-Llama-Py-34B

failure (first attempt)
failure (last attempt)
success (last attempt)
success (first attempt)

Figure 3: CDFs of mean per-problem pass@1 for Code LLMs on the four subsets of StudentEval. The 𝑦-axis shows the fraction

of problems in each subset. The 𝑥-axis shows by-problem mean pass@1 for student prompts.

(𝑝=0.007). However, this finding seems driven by last submissions,
where successful prompts are on average longer; the average length
is similar for passing and failing first prompts (Figure 2a). Quali-
tatively, we have observed that students tend to add more detail
on subsequent attempts rather than modifying their earlier text,
which likely contributes to this finding.

Input/output word choice We found a significant positive effect of
mentioning “return” in the prompt (𝑝<0.0001). This likely resolves
the problematic ambiguity associated with prompts that mention
“output” rather than specifying whether the function should return
or print (Figure 6b).

Datatype mentions We explored the effect of mentioning dictio-
naries, lists, and number types, as well as including instances of
lists and dictionaries in the prompt. We found a reliable positive
effect of mentioning “list” (𝑝=0.02), and a borderline negative effect
of mentioning “array” (𝑝=0.053). This suggests that StarCoderBase
is sensitive to Python terminology conventions.

Function and parameter names We found no reliable effect of
mentioning the parameter names in the prompt, but a significant
negative effect of mentioning the function name (𝑝=0.02).

5.3 Inspecting Visual Representations

We generated embeddings of each prompt from the last-layer at-
tention weights of StarCoderBase in order to explore prompt simi-
larities and differences. Figure 6 shows key clusters of embeddings
plotted using t-SNE [26].

Multiple prompt formulations exist. Some problems form multi-
ple clusters, indicating different ways of describing the task. The
combine problem prompts form two clusters (Figure 6c). The top
right cluster contains succinct prompts, as exemplified by Prompt
2: Combine lists from 11 to lists from 12. The bottom left prompts
provide detailed step-by-step directions: Takes an input of two lists,

l1 and l2, each of which also contains lists. It combines the first list in

l1 with the first one in l2, then continues for all items in l1 and l2. It

outputs this final list which is a combination of l1 and l2 (Prompt 1).

Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, Arjun Guha, Molly Q Feldman, and Carolyn Jane Anderson

0

2

4

6

0.0 0.1 0.2 0.3 0.4 0.5
Mean pass@1 rate

N
um

be
r

of
 p

ar
tic

ip
an

ts

Figure 4: Participant mean pass@1 rates with StarCoderBase

Figure 5: TF-IDF values for overlapping words in the top 25

words for all subsets.

Both approaches can generate passing programs; future work could
explore whether there are style differences between the programs
generated by different prompting methods.

Errors and ambiguities pattern together Examining problem sub-
clusters also reveals patterns in prompting failures. In Figure 6b,
for instance, there is a sub-cluster of prompts that are ambiguous
about whether the function should print or return the desired value.
Although a human might be able to disambiguate, these are unreli-
able prompts: the model may sometimes generate a solution using
print and sometimes using return. Another sub-cluster consists
of prompts that contain the string “aspen” (lower-case) rather than
“Aspen” (upper-case), causing the generated code to fail test cases.

Certain prompting styles are challenging Although most prompt
embeddings cluster by problem, a handful of clusters contain prompts
for multiple problems, representing cases where the model strug-
gles to distinguish among problem descriptions. One prompting
style that students use is to describe the function’s behavior in
terms of expected input/output pairs. For instance, If the number

is below 10, make it 10 [...] is a prompt that uses this strategy for
increaseScore.

Although there are passing examples of this style, it does not
seem to work for problems with more complex data, such as nested
lists or dictionaries. Figure 6a shows a cluster of prompts that give
examples of lists. These prompts describe different problems, yet
their embeddings cluster together away from the clusters of their
respective problems, indicating that the model may struggle to
differentiate these rarer values. This style of prompt is likely to be
well-understood by humans, yet works poorly for current Code
LLMs.

5.4 Ambiguity in Prompts

Most work on Code LLMs asks whether models produce correct
code for a given prompt. However, it is also possible to have an
ambiguous prompt that generates semantically different functions.
Testing semantic equivalence is undecidable, but we can compute
a lower bound on the number of semantically different functions:
for each prompt completion, we use the inputs from the test cases
as a vector of examples. We run each completion to collect a vec-
tor of outputs that forms the function’s test signature [24]. When
two functions have distinct test signatures, they are semantically
distinct. Identical results are inconclusive.

Figure 7a summarizes results for each subset of StudentEval.
As expected, Success prompts the most reliable: they generate fewer
functions on average than First/Last Failure prompts. Overall, how-
ever, prompts generate a surprising number of distinct functions.
Even prompts that are relatively clear to humans can be unreli-

able and generate many distinct functions (as in the example in
Figure 7b).

This highlights the importance of evaluating prompt reliability.
Though the Figure 7b prompt produced a passing function during
the experiment, it was likely to fail. This has important implications
for Code LLMs as teaching tools (see Finnie-Ansley et al. [10],
Leinonen et al. [17]): reliability issues may mislead students into
thinking their descriptions are better than they are or into over-
complicating descriptions that are straightforward to a human, but
unreliable for models.

6 Conclusion

Wepresent StudentEval, a large benchmark for Code LLMs, where
the prompts are written by students who have completed one se-
mester of Python. A key feature of StudentEval is that it has
numerous different natural language descriptions of each problem,
written by a key group of non-expert programmers: beginning stu-
dents. We show that larger models are more capable of following
student-written instructions than smaller models. We also find that
many student-written prompts are unreliable (have low pass@1):
students get lucky (or unlucky) when using Code LLMs. Finally,
we investigate the question of what makes a good prompt from

StudentEval: A Benchmark of Student-Written Prompts for Large Language Models of Code

15 10 5 0 5 10 15 20

60.0

57.5

55.0

52.5

50.0

47.5

45.0

42.5

40.0

convert:fail
generateCardDeck:pass
generateCardDeck:fail
hasHorizontalWin:pass
remove_odd:pass
remove_odd:fail

(a) Test case cluster

print/return
 ambiguous

"aspen"

(b) check_for_aspen prompts

1

2

(c) combine prompts

Figure 6: Prompt embeddings generated using StarCoderBase and reduced using t-SNE.

Subset #Functions
failure (first attempt) 2.2 (2.0) ± 1.6
failure (last attempt) 2.4 (2.0) ± 1.6
success (first attempt) 1.9 (1.0) ± 1.3
success (last attempt) 2.2 (2.0) ± 1.3

(a) Mean (median) & standard deviation of the number of func-

tions produced by StarCoderBase for each prompt.

The function takes a string of text as an input. For words in the

string with an odd number of letters, every other letter is capital-

ized starting with the first letter. For words in the string with an

even number of letters, every other letter is capitalized starting

with the second letter.

(b) A First Success prompt that produces 7 functions.

Figure 7: StudentEval prompts can be ambiguous to LLMs

and produce several distinct functions.

several angles, finding that models struggle to understand some
valid strategies, such as giving examples of complex data.

We hope that StudentEval will make it easier to evaluate how
well Code LLMs work when given descriptions written by non-
experts, leading to the development of models that work better for
this key group of potential users.

Limitations

Although our findings shed light on how well Code LLMs work
with descriptions written by one key group of non-experts, there
is more work to be done. We study only one group of non-experts
(beginning students); moreover, our participants were recruited
from three selective institutions within the US. Other groups of
students or other populations of non-experts may use different
strategies to describe code. This highlights the need for more work
exploring how diverse populations of non-experts might interact
with Code LLMs.

Our participants also wrote their prompts interactively while
using a Codex model. It is possible that they would have revised
their problems differently with a different model; this is one reason

we do not emphasize comparisons between Codex and other Code
LLMs in our evaluation section.

Ethics Statement

There are two main ethical concerns for this work: (1) ethical con-
cerns about the involvement of student research participants and
(2) concerns about how the dataset could be used in future work.

Our work was conducted in accordance with approval from the
Brandeis University Human Research Protection Program. Potential
harms to student participants were a first-class consideration in
the design. We sought to address power dynamics and protect
participant autonomywith a number of measures.We collected data
in an opt-in manner, outside of the classroom, and with informed
consent. The researcher conducting the study was not affiliated
with the student participant’s institution. Students were asked to
complete programming assignments with familiar content and were
alerted to potential discomfort caused by interacting with an AI-
based tool.

All identifying information has been removed from the dataset.
We plan to release the full dataset via the Open Science Frame-
work; participants consented to the release of their anonymized
data. The main data file is included as part of the Appendix. The
Appendix also contains a “Datasheet for Dataset” outlining perti-
nent dataset information. We provide pertinent screenshots and
text illustrating the experimental platform in the Appendix. The
full experimental protocol will be shared publicly through the Open
Science Framework upon acceptance.

Our second ethical concern is that releasing this dataset may
lead to the development of technology that we would not build
ourselves, such as attempts to automate education in a way that
would negatively impact the educational experience of students. We
feel that the benefit of providing this data, which we hope will lead
to Code LLMs that work better for non-expert users, democratizing
access to programming, outweigh this risk.

It is also possible that future users may generalize results from
the dataset beyond what is appropriate; our study involves early
CS students in a particular educational context (selective US insti-
tutions) and may not generalize to other populations.

Hannah McLean Babe, Sydney Nguyen, Yangtian Zi, Arjun Guha, Molly Q Feldman, and Carolyn Jane Anderson

Finally, this research was only possible due to model access and
funding. To obtain the benchmark results from the 12 LLMs, we
used around 2 weeks of GPU time on an H100 GPU. There are
ongoing ethical concerns about access to models and infrastructure.
The evaluation of the dataset in this paper centers both open-source
and small-scale models, but fully addressing these issues should be
a priority for the broader community.

Acknowledgements

This work is partially supported by the National Science Foundation
(SES-2326173, SES-2326174, and SES-2326175).

References

[1] Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi,
and Hannaneh Hajishirzi. 2019. MathQA: Towards Interpretable Math Word
Problem Solving with Operation-Based Formalisms. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
[2] Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, Yuchen

Tian, Ming Tan, Wasi Uddin Ahmad, Shiqi Wang, Qing Sun, Mingyue Shang,
Sujan Kumar Gonugondla, Hantian Ding, Varun Kumar, Nathan Fulton, Arash
Farahani, Siddhartha Jain, Robert Giaquinto, Haifeng Qian, Murali Krishna Ra-
manathan, RameshNallapati, Baishakhi Ray, Parminder Bhatia, Sudipta Sengupta,
Dan Roth, and Bing Xiang. 2023. Multi-Lingual Evaluation of Code Generation
Models. In International Conference on Learning Representations.

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
et al. 2021. Program synthesis with large language models. arXiv preprint

arXiv:2108.07732 (2021).
[4] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Ellen Tan,

Yossef (Yossi) Adi, Jingyu Liu, Tal Remez, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan
Xiong, Alexandre Defossez, Jade Copet, Faisal Azhar, Hugo Touvron, Gabriel
Synnaeve, Nicolas Usunier, and Thomas Scialom. 2023. Code Llama: Open
Foundation Models for Code.

[5] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded
Copilot: How Programmers Interact with Code-Generating Models. Proceedings
of the ACM on Programming Languages (PACMPL) 7, OOPSLA (2023).

[6] Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-
Costin, Donald Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, et al. 2023. MultiPL-E: A Scalable and Polyglot Approach to
Benchmarking Neural Code Generation. IEEE Transactions on Software Engineer-

ing (2023).
[7] Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, , Abby Brennan-Jones, Anton

Lozhkov, Carolyn Anderson, and Arjun Guha. 2024. Can It Edit? Evaluating
the Ability of Large Language Models to Follow Code Editing Instructions. In
LLM4Code Workshop.

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[9] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated Repair of Programs from Large Language Models. In
IEEE/ACM International Conference on Software Engineering (ICSE).

[10] James Finnie-Ansley, Paul Denny, Brett A. Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of
OpenAI Codex on Introductory Programming. In Australasian Computing Educa-

tion Conference (Virtual Event, Australia) (ACE ’22). Association for Computing
Machinery, New York, NY, USA, 10–19. https://doi.org/10.1145/3511861.3511863

[11] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie
Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de
Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang,
Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and Yuanzhi
Li. 2023. Textbooks Are All You Need. https://doi.org/10.48550/arXiv.2306.11644
arXiv:2306.11644 [cs]

[12] Konrad Hałas. 2013. Cost Reduction of Mutation Testing Process in the MutPy Tool.
Ph. D. Dissertation. Instytut Informatyki.

[13] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring Mathematical Problem
SolvingWith the MATHDataset. In Thirty-fifth Conference on Neural Information

Processing Systems Datasets and Benchmarks Track (Round 2).

[14] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.

[15] Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex
Aiken, and Percy S Liang. 2019. Spoc: Search-based pseudocode to code. Advances
in Neural Information Processing Systems 32 (2019).

[16] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettle-
moyer, Scott Wen-tau Yih, Daniel Fried, Sida Wang, and Tao Yu. 2023. DS-1000:
A Natural and Reliable Benchmark for Data Science Code Generation. In Inter-

national Conference on Machine Learning (ICML).
[17] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne

Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. In Conference on Innovation and Tech-

nology in Computer Science Education (ITiCSE). Association for Computing Ma-
chinery, New York, NY, USA, 124–130. https://doi.org/10.1145/3587102.3588785

[18] Raymond Li, Loubna Ben Allal, et al. 2023. StarCoder: May the Source Be with
You! Transactions of Machine Learning Research (Dec. 2023).

[19] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is
Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. In Conference on Neural Information

Processing Systems (NeurIPS).
[20] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio

Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano, MING GONG, Ming Zhou, Nan
Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie LIU. 2021.
CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation. In Conference on Neural Information Processing Systems Datasets

and Benchmarks Track.
[21] Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui,

Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne
Longpre. 2023. OctoPack: Instruction Tuning Code Large Language Models. In
NeurIPS Workshop on Instruction Tuning and Instruction Following.

[22] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. In International Conference

on Learning Representations (ICLR).
[23] Max Schafer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2024. An Empirical

Evaluation of Using Large Language Models for Automated Unit Test Generation.
IEEE Transactions on Software Engineering 50, 01 (jan 2024), 85–105. https:
//doi.org/10.1109/TSE.2023.3334955

[24] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim,
Milo M.K. Martin, and Rajeev Alur. 2013. TRANSIT: Specifying Protocols with
Concolic Snippets. In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI).
[25] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation

vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In Extended Abstracts of the 2022 CHI Conference on

Human Factors in Computing Systems (New Orleans, LA, USA) (CHI EA ’22).
Association for Computing Machinery, New York, NY, USA, Article 332, 7 pages.
https://doi.org/10.1145/3491101.3519665

[26] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using
t-SNE. Journal of machine learning research 9, 11 (2008).

[27] Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN

International Symposium on Machine Programming. 21–29.

https://doi.org/10.1145/3511861.3511863
https://doi.org/10.48550/arXiv.2306.11644
https://arxiv.org/abs/2306.11644
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1145/3491101.3519665

	Abstract
	1 Introduction
	2 Background
	3 The StudentEval Dataset
	4 Results
	4.1 How Do Models Perform on StudentEval?
	4.2 Variation in Pass@1
	4.3 Participant Success Rates

	5 What Makes a Successful Prompt?
	5.1 Trends in Student Word Choice
	5.2 Statistical Significance of Prompt Wording
	5.3 Inspecting Visual Representations
	5.4 Ambiguity in Prompts

	6 Conclusion
	References

